Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891888

RESUMEN

Ulcerative colitis (UC), an inflammatory bowel disease (IBD), may increase the risk of colorectal cancer (CRC) by activating chronic proinflammatory pathways. The goal of this study was to find serum prediction biomarkers in UC to CRC development by combining low-density miRNA microarray and biocomputational approaches. The UC and CRC miRNA expression profiles were compared by low-density miRNA microarray, finding five upregulated miRNAs specific to UC progression to CRC (hsa-let-7d-5p, hsa-miR-16-5p, hsa-miR-145-5p, hsa-miR-223-5p, and hsa-miR-331-3p). The circRNA/miRNA/mRNA competitive endogenous RNA (ceRNA) network analysis showed that the candidate miRNAs were connected to well-known colitis-associated CRC ACVR2A, SOCS1, IGF2BP1, FAM126A, and CCDC85C mRNAs, and circ-SHPRH circRNA. SST and SCARA5 genes regulated by hsa-let-7d-5p, hsa-miR-145-5p, and hsa-miR-331-3p were linked to a poor survival prognosis in a CRC patient dataset from The Cancer Genome Atlas (TCGA). Lastly, our mRNA and miRNA candidates were validated by comparing their expression to differentially expressed mRNAs and miRNAs from colitis-associated CRC tissue databases. A high level of hsa-miR-331-3p and a parallel reduction in SOCS1 mRNA were found in tissue and serum. We propose hsa-miR-331-3p and possibly hsa-let-7d-5p as novel serum biomarkers for predicting UC progression to CRC. More clinical sample analysis is required for further validation.


Asunto(s)
Biomarcadores de Tumor , Colitis Ulcerosa , Neoplasias Colorrectales , Progresión de la Enfermedad , Perfilación de la Expresión Génica , MicroARNs , Humanos , MicroARNs/genética , Colitis Ulcerosa/genética , Colitis Ulcerosa/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Biomarcadores de Tumor/genética , Biología Computacional/métodos , Masculino , Femenino , Persona de Mediana Edad , Redes Reguladoras de Genes , Regulación Neoplásica de la Expresión Génica , Adulto
2.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542183

RESUMEN

Inflammatory bowel conditions can involve nearly all organ systems and induce pathological processes through increased oxidative stress, lipid peroxidation and disruption of the immune response. Patients with inflammatory bowel disease (IBD) are at high risk of having extra-intestinal manifestations, for example, in the hepatobiliary system. In 30% of patients with IBD, the blood values of liver enzymes, such as AST and ALT, are increased. Moreover, treatments for inflammatory bowel diseases may cause liver toxicity. Apple polyphenol extracts are widely acknowledged for their potential antioxidant effects, which help prevent damage from oxidative stress, reduce inflammation, provide protection to the liver, and enhance lipid metabolism. The aim of this study was to investigate whether the polyphenol apple extract from Malus domestica cv. 'Limoncella' (LAPE) may be an effective intervention for the treatment of IBD-induced hepatotoxicity. The LAPE was administrated in vivo by oral gavage (3-300 mg/kg) once a day for 3 consecutive days, starting 24 h after the induction of dinitro-benzenesulfonic acid (DNBS) colitis in mice. The results showed that LAPE significantly attenuated histological bowel injury, myeloperoxidase activity, tumor necrosis factor and interleukin (IL-1ß) expressions. Furthermore, LAPE significantly improved the serum lipid peroxidation and liver injury in DNBS-induced colitis, as well as reduced the nuclear transcription factor-kappaB activation. In conclusion, these results suggest that LAPE, through its antioxidant and anti-inflammatory properties, could prevent liver damage induced by inflammatory bowel disease.


Asunto(s)
Bencenosulfonatos , Colitis , Dinitrofluorobenceno/análogos & derivados , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Dinitrobencenos , Polifenoles/efectos adversos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Antioxidantes/efectos adversos , Hígado/metabolismo
3.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35745646

RESUMEN

Polycaprolactone nanofibers are used as scaffolds in the field of tissue engineering for tissue regeneration or drug delivery. Polycaprolactone (PCL) is a biodegradable hydrophobic polyester used to obtain implantable nanostructures, which are clinically applicable due to their biological safety. Polydatin (PD), a glycosidic precursor of resveratrol, is known for its antioxidant, antitumor, antiosteoporotic, and bone regeneration activities. We aimed to use the osteogenic capacity of polydatin to create a biomimetic innovative and patented scaffold consisting of PCL-PD for bone tissue engineering. Both osteosarcoma cells (Saos-2) and mesenchymal stem cells (MSCs) were used to test the in vitro cytocompatibility of the PD-PCL scaffold. Reverse-phase (RP) HPLC was used to evaluate the timing release of PD from the PCL-PD nanofibers and the MTT assay, scanning electron microscopy, and alkaline phosphatase (ALP) activity were used to evaluate the proliferation, adhesion, and cellular differentiation in both osteosarcoma and human mesenchymal stem cells (MSCs) seeded on PD-PCL nanofibers. The proliferation of osteosarcoma cells (Saos-2) on the PD-PCL scaffold decreased when compared to cells grown on PLC nanofibers, whereas the proliferation of MSCs was comparable in both PCL and PD-PCL nanofibers. Noteworthy, after 14 days, the ALP activity was higher in both Saos-2 cells and MSCs cultivated on PD-PCL than on empty scaffolds. Moreover, the same cells showed a spindle-shaped morphology after 14 days when grown on PD-PCL as shown by SEM. In conclusion, we provide evidence that nanofibers appropriately coated with PD support the adhesion and promote the osteogenic differentiation of both human osteosarcoma cells and MSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA