Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Heliyon ; 10(19): e38637, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39403541

RESUMEN

Ponatinib is a potent tyrosine kinase inhibitor that is approved for the treatment of chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. To further expand its clinical applications, accurate quantification of ponatinib in plasma is essential. In this study, we developed and validated a sensitive and selective high-performance liquid chromatography (HPLC) method coupled with a fluorescence detector (FLD) to measure ponatinib concentrations in rat plasma using the Analytical Quality by Design approach. Briefly, we screened and optimized the critical method parameters using the Taguchi and Box-Behnken designs. The developed method had excellent linearity in the range of 1-1000 ng/mL, sensitivity, and reproducibility, and required minimal sample volume and a short run time. Compared with previously reported HPLC-ultraviolet (UV) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods, this HPLC-FLD method offers superior sensitivity, simpler sample preparation, and greater efficiency. We successfully used this method in a pharmacokinetic study in rats to obtain reliable data on ponatinib plasma concentrations. Altogether, this analytical method will be applicable in several analytical conditions and will support further pharmacokinetic and clinical investigations of ponatinib for various cancer treatments.

2.
Biomed Pharmacother ; 178: 117114, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053425

RESUMEN

Bosutinib has been approved for use in patients with chronic myeloid leukemia. Information regarding the effects of bosutinib on clinically important drug transporters is limited, particularly regarding its inhibitory potency on transporters and in vivo effects. Therefore, we conducted a study investigating the in vitro and in vivo effects of bosutinib on drug transporters. Bosutinib showed moderate or strong inhibitory effects on organic cation transporter 2, multidrug and toxin extrusion protein 1, and breast cancer resistance protein with IC50 values of 0.0894, 0.598, and 10.8 µM, respectively. In vivo experiments in rats showed that bosutinib significantly inhibited organic cation transporter 2 and multidrug and toxin extrusion protein 1, leading to a marked reduction in the renal clearance of metformin and an increase in systemic exposure to metformin. Bosutinib increased systemic exposure to sulfasalazine, a probe substrate of breast cancer resistance protein, by 75 % in rats, highlighting its potential to significantly affect intestinal drug efflux. These quantitative changes suggest that bosutinib may alter the in vivo pharmacokinetics of drugs that are substrates of these transporters, potentially leading to increased drug exposure and enhanced or unexpected pharmacological effects.


Asunto(s)
Compuestos de Anilina , Nitrilos , Quinolinas , Animales , Nitrilos/farmacología , Nitrilos/farmacocinética , Quinolinas/farmacología , Quinolinas/farmacocinética , Compuestos de Anilina/farmacología , Compuestos de Anilina/farmacocinética , Masculino , Ratas , Humanos , Ratas Sprague-Dawley , Metformina/farmacología , Metformina/farmacocinética , Transporte Biológico/efectos de los fármacos
3.
Molecules ; 29(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38474516

RESUMEN

FAF1 (FAS-associated factor 1) is involved in the activation of Fas cell surface death receptors and plays a role in apoptosis and necrosis. In patients with Parkinson's disease, FAF1 is overexpressed in dopaminergic neurons in the substantia nigra. KM-819, an FAF1 inhibitor, has shown potential for preventing dopaminergic neuronal cell death, promoting the degradation of α-synuclein and preventing its accumulation. This study aimed to develop and validate a quantitative analytical method for determining KM-819 levels in rat plasma using liquid chromatography-tandem mass spectrometry. This method was then applied to pharmacokinetic (PK) studies in rats. The metabolic stability of KM-819 was assessed in rat, dog, and human hepatocytes. In vitro metabolite identification and metabolic pathways were investigated in rat, dog, and human hepatocytes. The structural analog of KM-819, namely N-[1-(4-bromobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl]-2-(phenylsulfanyl) acetamide, served as the internal standard (IS). Proteins were precipitated from plasma samples using acetonitrile. Analysis was carried out using a reverse-phase C18 column with a mobile phase consisting of 0.1% formic acid in distilled water and 0.1% formic acid in acetonitrile. The analytical method developed for KM-819 exhibited linearity within the concentration range of 0.002-10 µg/mL in rat plasma. The precision and accuracy of the intra- and inter-day measurements were <15% for the lower limit of quantification (LLOQ) and all quality control samples. KM-819 demonstrated stability under various sample storage conditions (6 h at room temperature (25 °C), four weeks at -20 °C, three freeze-thaw cycles, and pretreated samples in the autosampler). The matrix effect and dilution integrity met the criteria set by the Food and Drug Administration and the European Medicines Agency. This sensitive, rapid, and reliable analytical method was successfully applied in pharmacokinetic studies in rats. Pharmacokinetic analysis revealed the dose-independent kinetics of KM-819 at 0.5-5 mg/kg, with a moderate oral bioavailability of ~20% in rats. The metabolic stability of KM-819 was also found to be moderate in rat, dog, and human hepatocytes. Metabolite identification in rat, dog, and human hepatocytes resulted in the discovery of six, six, and eight metabolites, respectively. Glucuronidation and mono-oxidation have been proposed as the major metabolic pathways. Overall, these findings contribute to a better understanding of the pharmacokinetic characteristics of KM-819, thereby aiding future clinical studies.


Asunto(s)
Formiatos , Compuestos Orgánicos , Enfermedad de Parkinson , Espectrometría de Masas en Tándem , Ratas , Humanos , Animales , Perros , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas , Acetonitrilos , Reproducibilidad de los Resultados , Cromatografía Líquida de Alta Presión/métodos , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis
4.
Toxicol Lett ; 394: 57-65, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423481

RESUMEN

Drug transporters are among the factors that determine the pharmacokinetic profiles after drug administration. In this study, we investigated the roles of drug transporters involved in transport of SN-38, which is an active metabolite of irinotecan, in the intestine under inflammatory conditions in vitro and determined their functional consequences. The expression alterations of breast cancer resistance protein (BCRP) and organic anion transporting polypeptide (OATP) 2B1 were determined at the mRNA and protein levels, and the subsequent functional alterations were evaluated via an accumulation study with the representative transporter substrates [prazosin and dibromofluorescein (DBF)] and SN-38. We also determined the cytotoxicity of SN-38 under inflammatory conditions. Decreased BCRP expression and increased OATP2B1 expression were observed under inflammatory conditions in vitro, which led to altered accumulation profiles of prazosin, DBF, and SN-38, and the subsequent cytotoxic profiles of SN-38. Treatment with rifampin or novobiocin supported the significant roles of BCRP and OATP2B1 in the transport and cytotoxic profile of SN-38. Collectively, these results suggest that BCRP and OATP2B1 are involved in the increased cytotoxicity of SN-38 under inflammatory conditions in vitro. Further comprehensive research is warranted to completely understand SN-38-induced gastrointestinal cytotoxicity and aid in the successful treatment of cancer with irinotecan.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Transportadores de Anión Orgánico , Humanos , Femenino , Irinotecán , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Proteínas de Transporte de Membrana , Prazosina , Neoplasias de la Mama/tratamiento farmacológico
5.
Chem Biol Interact ; 390: 110886, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38280639

RESUMEN

Niclosamide is an anthelmintic drug with a long history of use and is generally safe and well tolerated in humans. As the conventional dose of niclosamide results in a low but certain level in systemic circulation, drug interactions with concomitant drugs should be considered. We aimed to investigate the interaction between niclosamide and drug transporters, as such information is currently limited. Niclosamide inhibited the transport activity of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 in vitro. Among them, the inhibitory effects on OAT1, OAT3, and OCT2 were strong, with IC50 values of less than 1 µM. When 3 mg/kg of niclosamide was co-administered to rats, systemic exposure to furosemide (a substrate of OAT1/3) and metformin (a substrate of OCT2) increased, and the renal clearance (CLr) of the drugs significantly decreased. These results suggest that niclosamide inhibits renal transporters, OAT1/3 and OCT2, not only in vitro but also in vivo, resulting in increased systemic exposure to the substrates of the transporters by strongly blocking the urinary elimination pathway in rats. The findings of this study will support a meticulous understanding of the transporter-mediated drug interactions of niclosamide and consequently aid in effective and safe use of niclosamide.


Asunto(s)
Transportadores de Anión Orgánico Sodio-Independiente , Transportadores de Anión Orgánico , Humanos , Ratas , Animales , Transportador 2 de Cátion Orgánico , Proteínas de Transporte de Catión Orgánico , Niclosamida/farmacología , Interacciones Farmacológicas , Transportadores de Anión Orgánico/metabolismo , Células HEK293
6.
Pharmaceutics ; 15(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37242713

RESUMEN

Amifampridine is a drug used for the treatment of Lambert-Eaton myasthenic syndrome (LEMS) and was approved by the Food and Drug Administration (FDA) of the United States (US) in 2018. It is mainly metabolized by N-acetyltransferase 2 (NAT2); however, investigations of NAT2-mediated drug interactions with amifampridine have rarely been reported. In this study, we investigated the effects of acetaminophen, a NAT2 inhibitor, on the pharmacokinetics of amifampridine using in vitro and in vivo systems. Acetaminophen strongly inhibits the formation of 3-N-acetylamifmapridine from amifampridine in the rat liver S9 fraction in a mixed inhibitory manner. When rats were pretreated with acetaminophen (100 mg/kg), the systemic exposure to amifampridine significantly increased and the ratio of the area under the plasma concentration-time curve for 3-N-acetylamifampridine to amifampridine (AUCm/AUCp) decreased, likely due to the inhibition of NAT2 by acetaminophen. The urinary excretion and the amount of amifampridine distributed to the tissues also increased after acetaminophen administration, whereas the renal clearance and tissue partition coefficient (Kp) values in most tissues remained unchanged. Collectively, co-administration of acetaminophen with amifampridine may lead to relevant drug interactions; thus, care should be taken during co-administration.

7.
Chem Biol Interact ; 379: 110504, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37084994

RESUMEN

Organic cation transporter 2 (OCT2) is predominantly expressed in the basolateral membrane of renal proximal tubule cells and contributes to the renal excretion of various drugs such as metformin, cisplatin, oxaliplatin, cimetidine, and lamivudine. Cisplatin, an anticancer agent for various cancers, is a substrate of OCT2, and cisplatin-induced nephrotoxicity is in part attributed to OCT2 activity in the kidney, which increases the renal accumulation of cisplatin. In this study, we aimed to identify flavone derivatives with strong inhibitory effects on OCT2 transport. Among the 80 flavonoids tested, 24 showed moderate to strong inhibitory effects against OCT2 transport activity. The IC50 values were less than 5 µM for 10 flavonoids. All 10 compounds alleviated cisplatin-induced cytotoxicity in cells expressing OCT2, even though the magnitude of the effects varied depending on the functional moieties in each position. Multiple factor analysis revealed that the methyl group at the R1 position and methoxy group at the R6 position of the flavonol backbone are important for OCT2 inhibition. Information on the functional moieties in the flavonol backbone would help develop effective OCT2 inhibitors by providing a structural association with OCT2 inhibitory effects. In addition, the compounds with strong inhibitory effects on OCT2 identified in this study may be potential candidates for clinical use to mitigate cisplatin-induced nephrotoxicity.


Asunto(s)
Cisplatino , Proteínas de Transporte de Catión Orgánico , Cisplatino/farmacología , Transportador 2 de Cátion Orgánico , Flavonoides/farmacología , Flavonoles
8.
Curr Issues Mol Biol ; 45(3): 2474-2490, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36975532

RESUMEN

To overcome the limitation of conventional cancer treatments, photodynamic therapy (PDT) has been introduced as another treatment option. PDT provides a non-invasive, non-surgical way with reduced toxicity. To improve the antitumor efficacy of PDT, we synthesized a novel photosensitizer, a 3-substituted methyl pyropheophorbide-a derivative (Photomed). The purpose of the study was to evaluate the antitumor effect of PDT with Photomed comparing with the clinically approved photosensitizers Photofrin and Radachlorin. The cytotoxicity assay against SCC VII cells (murine squamous cell carcinoma) was performed to determine whether Photomed is safe without PDT and whether Photomed is effective against cancer cells with PDT. An in vivo anticancer efficacy study was also performed using SCC VII tumor-bearing mice. The mice were divided into small-tumor and large-tumor groups to identify whether Photomed-induced PDT is effective for not only small tumors but also large tumors. From in vitro and in vivo studies, Photomed was confirmed to be (1) a safe photosensitizer without laser irradiation, (2) the most effective photosensitizer with PDT against cancers compared to Photofrin and Radachlorin and (3) effective with PDT in treating not only small tumors but also large tumors. In conclusion, Photomed may contribute as a novel, potential photosensitizer for use in PDT cancer treatment.

9.
Pharmaceutics ; 15(3)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36986803

RESUMEN

Enavogliflozin is a sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor approved for clinical use in South Korea. As SGLT2 inhibitors are a treatment option for patients with diabetes, enavogliflozin is expected to be prescribed in various populations. Physiologically based pharmacokinetic (PBPK) modelling can rationally predict the concentration-time profiles under altered physiological conditions. In previous studies, one of the metabolites (M1) appeared to have a metabolic ratio between 0.20 and 0.25. In this study, PBPK models for enavogliflozin and M1 were developed using published clinical trial data. The PBPK model for enavogliflozin incorporated a non-linear urinary excretion in a mechanistically arranged kidney model and a non-linear formation of M1 in the liver. The PBPK model was evaluated, and the simulated pharmacokinetic characteristics were in a two-fold range from those of the observations. The pharmacokinetic parameters of enavogliflozin were predicted using the PBPK model under pathophysiological conditions. PBPK models for enavogliflozin and M1 were developed and validated, and they seemed useful for logical prediction.

10.
Eur J Pharm Sci ; 183: 106396, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36736464

RESUMEN

Altered drug concentrations may induce unexpected toxicity or treatment failure; thus, understanding the factors that alter the pharmacokinetic profiles of drugs is crucial for optimal disease treatment. Vitamin D receptor (VDR), a nuclear receptor, regulates the expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1), which are crucial determinants of drug pharmacokinetics. In this study, we investigated the effects of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], a VDR ligand, on the metabolism, transport, and pharmacokinetics of indinavir, a dual substrate of CYP3A4 and MDR1. 1,25(OH)2D3 treatment for three days upregulated the expression levels of CYP3A4 and MDR1 in Caco-2 cells and consequently led to an increase in the level of a metabolite formed via CYP3A4 (indinavir M6) and the efflux ratio of indinavir in transport study. The increase in the metabolic reaction was also confirmed through a metabolism assay performed using the lysate of 1,25(OH)2D3-treated Caco-2 cells. In the Ussing chamber study conducted with the rat intestine, 1,25(OH)2D3 treatment did not alter the transport of indinavir into the basolateral side but increased indinavir M6 formation. Similarly, plasma levels of the metabolite increased in 1,25(OH)2D3-treated rats; however, systemic exposure to indinavir led to insignificant alterations. Considering the overlapping substrate specificities for CYP3A4 and MDR1 and their significant roles in drug pharmacokinetics, VDR may play an important role in drug interactions of CYP3A4 and MDR1 substrates for accessing more effective and safe disease treatments.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Citocromo P-450 CYP3A , Humanos , Ratas , Animales , Citocromo P-450 CYP3A/metabolismo , Células CACO-2 , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Indinavir/farmacología , Intestinos
11.
Pharmaceutics ; 14(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36297514

RESUMEN

Understanding possible follow-up actions on in vitro findings helps determine the necessity of labeling for drug interactions. We analyzed information for in vitro findings on transporter-mediated interactions of drugs approved by the U.S. Food and Drug Administration's Center for Drug Evaluation and Research for the last five years (i.e., 2017-2021) and their follow-up actions for labeling. Higher R values than the pre-defined cut-off were observed with 3.7-39.1% inhibitor drugs in a simple prediction. Among these drugs, 16-41.7% were labeled with their potential drug interactions, while results of supporting studies or scientific rationales were submitted for the other drugs leading to no interaction labeling. In vitro transporter substrates were reported with 1.7-67.6% of drugs. The interaction labels for these substrate drugs were observed in up to 40% of drugs, while the other drugs were not labeled on the drug interactions with claims for their low interaction potential, evidenced by clinical studies or scientific rationales. The systematic and comprehensive analysis in this study will provide insight into the management of in vitro findings for transporter substrate or inhibitor drugs.

12.
Biomed Pharmacother ; 153: 113514, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076601

RESUMEN

20(S)-Protopanaxadiol [20(S)-PPD] is a fully deglycosylated ginsenoside metabolite produced by the gut microbiota in the gastrointestinal tract. Although diverse pharmacological effects have been reported, information on the pharmacokinetic interactions of 20(S)-PPD with cytochrome P450s (CYPs) remains limited. Therefore, the inhibitory potential of 20(S)-PPD on CYP enzymes, which mainly contribute to drug pharmacokinetics, was investigated in this study. The inhibitory effect of 20(S)-PPD was strong for CYP3A4 and moderate for CYP2B6 in human liver microsomes. 20(S)-PPD inhibited Cyp3a and Cyp2b in mouse liver microsomes with a potency similar to that in humans. The solubility of 20(S)-PPD in the artificial intestinal fluid was close to IC50 values of Cyp3a and Cyp2b in the mouse intestine. Systemic exposure to buspirone (Cyp3a specific substrate) and bupropion (Cyp2b specific substrate) increased significantly, whereas the area under the plasma concentration-time curve (AUC) ratio of metabolite to parent drug decreased significantly when co-administered with 20(S)-PPD in mice. The pharmacokinetics of felodipine, a widely used anti-hypertensive agent metabolized mainly by Cyp3a, was also altered following 20(S)-PPD treatment in mice. In conclusion, 20(S)-PPD likely affects the in vivo metabolism of CYP3A4 or CYP2B6 substrates, suggesting a need for careful attention when concomitantly administering 20(S)-PPD with other medications. This study will broaden our understanding of ginseng and products containing precursor ginsenosides of 20(S)-PPD for safer and more efficient use in humans.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Ginsenósidos , Sapogeninas , Animales , Citocromo P-450 CYP2B6/efectos de los fármacos , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/efectos de los fármacos , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Ginsenósidos/farmacología , Humanos , Ratones , Sapogeninas/farmacología
13.
Anal Sci ; 38(10): 1347-1357, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35882772

RESUMEN

Drug interactions can induce significant clinical impacts, either by increasing adverse effects or by decreasing the therapeutic effect of drugs, and thus, need to be explored thoroughly. Clinically significant drug interactions can be induced by organic anion transporter 1 (OAT1) and OAT3 when concomitant medications competitively interact with the transporters. The purposes of this study were to develop and validate a sensitive and selective analytical method for 5-carboxyfluorescein (5-CF) and optimize the experimental conditions for interaction studies. An analytical method using high-performance liquid chromatography (HPLC) equipped with a fluorescence detector was validated for accuracy, precision, matrix effect, recovery, stability, dilutional integrity, and carry-over effect. In addition, the 5-CF concentration, incubation period, and washing conditions for interaction study were optimized. Using a valid analytical method and optimized conditions, we performed an interaction study for OAT1 and OAT3 using 26 test articles. Some of the test articles showed strong inhibitory potency for the transporters, with IC50 values close to or less than 10 µM. The valid analysis method and optimized systems developed in this study can be utilized to improve the predictability of drug interactions in humans and consequently aid in successful disease treatment by maintaining appropriate systemic exposures.


Asunto(s)
Proteína 1 de Transporte de Anión Orgánico , Transportadores de Anión Orgánico Sodio-Independiente , Interacciones Farmacológicas , Fluoresceínas , Humanos
14.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35745628

RESUMEN

Fexuprazan is a potassium-competitive acid blocker (P-CAB). The compounds in this newly developed drug family suppress intragastric acidity. As there are already other acid-suppressing drugs on the market, such as H2 antagonists and proton pump inhibitors (PPIs), it would be informative to compare the biological effects of fexuprazan against another approved drug with the same indication. The drug concentration predicted by the pharmacokinetic (PK) model could serve as an input function for a pharmacodynamic (PD) model. The apparent pharmacokinetics of fexuprazan could be described by a simpler model. However, a physiologically based pharmacokinetic (PBPK) model was developed in a previous study. A one-compartment model was also proposed in the present study. Both the newly suggested model and the previously validated PBPK model were used as input functions of the PD models. Our simulation revealed that the effects of fexuprazan could be effectively simulated by the proposed PK-PD models. A PK-PD model was also proposed for the oral administration of the PPI reference drug esomeprazole. A model-based analysis was then performed for intragastric pH using several dosing methods. The expected pH could be predicted for both drugs under several dosing regimens using the proposed PK-PD models.

15.
Eur J Pharm Sci ; 173: 106177, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35341895

RESUMEN

Olaparib is a first-in-class poly (ADP-ribose) polymerase oral inhibitor used to treat various tumors. In this study, we clarified the roles of ABCB1/Abcb1 and ABCG2/Abcg2 transporters in restricting olaparib distribution to the brain. Olaparib was efficiently transported by human ABCG2, human ABCB1, and mouse Abcg2 in vitro. In the in vivo disposition study of olaparib using single or combination knockout mice, the systemic exposure of olaparib did not differ significantly between the strains over an 8-h period. However, the brain-to-plasma unbound concentration ratio of olaparib increased 5.6- and 8.1-fold in Abcb1a/1b and Abcb1a/1b;Abcg2 knockout mice, respectively, compared with wild-type mice. The Abcg2 single knockout mice exhibited a similar brain-to-plasma unbound concentration ratio to wild-type mice. Moreover, the brain distribution of olaparib could be modulated by the ABCB1/ABCG2 dual inhibitor elacridar to reach a similar degree of inhibition to Abcb1a/1b-/-. These findings suggest that olaparib is actively transported by both human and mouse ABCB1/Abcb1 and ABCG2/Abcg2; while Abcb1a/1b is a major determinant of olaparib brain penetration in mice, Abcg2 is likely to be a minor contributor. Concomitant treatment with temozolomide slightly increased the brain distribution of olaparib in mouse, but the clinical impact of the interaction was expected to be limited.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Antineoplásicos , Encéfalo , Ftalazinas , Piperazinas , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Antineoplásicos/farmacocinética , Encéfalo/metabolismo , Ratones , Ratones Noqueados , Ftalazinas/farmacocinética , Piperazinas/farmacocinética , Distribución Tisular
16.
Transl Clin Pharmacol ; 30(4): 201-211, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36632076

RESUMEN

Nafamostat has been actively studied for its neuroprotective activity and effect on various indications, such as coronavirus disease 2019 (COVID-19). Nafamostat has low water solubility at a specific pH and is rapidly metabolized in the blood. Therefore, it is administered only intravenously, and its distribution is not well known. The main purposes of this study are to predict and evaluate the pharmacokinetic (PK) profiles of nafamostat in a virtual healthy population under various dosing regimens. The most important parameters were assessed using a physiologically based pharmacokinetic (PBPK) approach and global sensitivity analysis with the Sobol sensitivity analysis. A PBPK model was constructed using the SimCYP® simulator. Data regarding the in vitro metabolism and clinical studies were extracted from the literature to assess the predicted results. The model was verified using the arithmetic mean maximum concentration (Cmax), the area under the curve from 0 to the last time point (AUC0-t), and AUC from 0 to infinity (AUC0-∞) ratio (predicted/observed), which were included in the 2-fold range. The simulation results suggested that the 2 dosing regimens for the treatment of COVID-19 used in the case reports could maintain the proposed effective concentration for inhibiting severe acute respiratory syndrome coronavirus 2 entry into the plasma and lung tissue. Global sensitivity analysis indicated that hematocrit, plasma half-life, and microsomal protein levels significantly influenced the systematic exposure prediction of nafamostat. Therefore, the PBPK modeling approach is valuable in predicting the PK profile and designing an appropriate dosage regimen.

17.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360634

RESUMEN

Autophagy is an attractive process to researchers who are seeking novel potential treatments for various diseases. Autophagy plays a critical role in degrading damaged cellular organelles, supporting normal cell development, and maintaining cellular homeostasis. Because of the various effects of autophagy, recent human genome research has focused on evaluating the relationship between autophagy and a wide variety of diseases, such as autoimmune diseases, cancers, and inflammatory diseases. The skin is the largest organ in the body and provides the first line of defense against environmental hazards, including UV damage, chemical toxins, injuries, oxidative stress, and microorganisms. Autophagy takes part in endogenous defense mechanisms by controlling skin homeostasis. In this manner, regulating autophagy might contribute to the treatment of skin barrier dysfunctions. Various studies are ongoing to elucidate the association between autophagy and skin-related diseases in order to find potential therapeutic approaches. However, little evidence has been gathered about the relationship between autophagy and the skin. In this review, we highlight the previous findings of autophagy and skin barrier disorders and suggest potential therapeutic strategies. The recent research regarding autophagy in acne and skin aging is also discussed.


Asunto(s)
Autofagia , Enfermedades de la Piel/etiología , Humanos , Terapia Molecular Dirigida , Permeabilidad , Piel/metabolismo , Enfermedades de la Piel/metabolismo , Enfermedades de la Piel/terapia
18.
Pharmaceutics ; 13(8)2021 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-34452094

RESUMEN

In this study, possible changes in the expression of rat organic cationic transporters (rOCTs) and rat multidrug and toxin extrusion proteins (rMATEs) following treatment with 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) were investigated. Rats received intraperitoneal administrations of 1,25(OH)2D3 for four consecutive days, and the tissues of interest were collected. The mRNA expression of rOCT1 in the kidneys was significantly increased in 1,25(OH)2D3-treated rats compared with the control rats, while the mRNA expressions of rOCT2 and rMATE1 in the kidneys, rOCT1 and N-acetyltransferase-II (NAT-II) in the liver, and rOCT3 in the heart were significantly decreased. Changes in the protein expression of hepatic rOCT1 and renal rOCT2 and rMATE1 were confirmed by western blot analysis. We further evaluated the pharmacokinetics of procainamide (PA) hydrochloride and its major metabolite N-acetyl procainamide (NAPA) in the presence of 1,25(OH)2D3. When PA hydrochloride was administered intravenously at a dose 10 mg/kg to 1,25(OH)2D3-treated rats, a significant decrease in renal and/or non-renal clearance of PA and NAPA was observed. A physiological model for the pharmacokinetics of PA and NAPA in rats was useful for linking changes in the transcriptional and translational expressions of rOCTs and rMATE1 transporters to the altered pharmacokinetics of the drugs.

19.
Artículo en Inglés | MEDLINE | ID: mdl-34332199

RESUMEN

Niclosamide, which is an anti-tapeworm drug, was developed in 1958. However, recent studies have demonstrated the antiviral effects of niclosamide against the SARS-CoV-2 virus, which causes COVID-19. In this study, we developed and validated a quantitative analysis method for the determination of niclosamide in rat and dog plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and used this method for pharmacokinetic studies. Biological samples were prepared using the protein precipitation method with acetonitrile. Ibuprofen was used as an internal standard. The mobile phase used to quantify niclosamide in rat or dog plasma consisted of 10 mM ammonium formate in distilled water-acetonitrile (30:70, v/v) or 5 mM ammonium acetate-methanol (30:70, v/v). An XDB-phenyl column (5 µm, 2.1 × 50 mm) and a Kinetex® C18 column (5 µm, 2.1 × 500 mm) were used as reverse-phase liquid chromatography columns for rat and dog plasma analyses, respectively. Niclosamide and ibuprofen were detected under multiple reaction monitoring conditions using the electrospray ionization interface running in the negative ionization mode. Niclosamide presented linearity in the concentration ranges of 1-3000 ng/mL (r = 0.9967) and 1-1000 ng/mL (r = 0.9941) in rat and dog plasma, respectively. The intra- and inter-day precision values were < 7.40% and < 6.35%, respectively, for rat plasma, and < 3.95% and < 4.01%, respectively, for dog plasma. The intra- and inter-day accuracy values were < 4.59% and < 6.63%, respectively, for rat plasma, and < 12.1% and < 10.9%, respectively, for dog plasma. In addition, the recoveries of niclosamide ranged between 87.8 and 99.6% and 102-104% for rat and dog plasma, respectively. Niclosamide was stable during storage under various conditions (three freeze-thaw cycles, 6 h at room temperature, long-term, and processed samples). A reliable LC-MS/MS method for niclosamide detection was successfully used to perform pharmacokinetic studies in rats and dogs. Niclosamide presented dose-independent pharmacokinetics in the dose range of 0.3-3 mg/kg after intravenous administration, and drug exposure in rats and dogs after oral administration was very low. Additionally, niclosamide presented high plasma protein binding (>99.8%) and low metabolic stability. These results can be helpful for further developing and understanding the pharmacokinetic characteristics of niclosamide to expand its clinical use.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Niclosamida/sangre , Espectrometría de Masas en Tándem/métodos , Animales , Perros , Humanos , Masculino , Ratas , Ratas Sprague-Dawley
20.
J Clin Pharmacol ; 61(11): 1505-1513, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34118174

RESUMEN

Fluoxetine is a selective serotonin reuptake inhibitor that is metabolized to norfluoxetine by cytochrome P450 (CYP) 2D6, CYP2C19, and CYP3A4. A physiologically based pharmacokinetic model for fluoxetine and norfluoxetine metabolism was developed to predict and investigate changes in concentration-time profiles according to fluoxetine dosage in the Korean population. The model was developed based on the Certara repository model and information gleaned from the literature. Digitally extracted clinical study data were used to develop and verify the model. Simulations for plasma concentrations of fluoxetine and norfluoxetine after a single dose of 60 or 80 mg fluoxetine were made based on 1000 virtual healthy Korean individuals using the SimCYP version 19 simulator. The mean ratios (simulated/observed) after a single administration of 80 mg fluoxetine for maximum plasma concentration, area under the plasma concentration-time curve, and apparent clearance were 1.12, 1.08, and 0.93 for fluoxetine; the ratios of maximum plasma concentration and area under the plasma concentration-time curve were 1.08 and 1.08, respectively, for norfluoxetine, indicating that the simulated concentration-time profiles of fluoxetine and norfluoxetine fitted the observed profiles well. The developed model was used to predict plasma fluoxetine and norfluoxetine concentration-time profiles after repeated administrations of fluoxetine in Korean volunteers. This physiologically based pharmacokinetic model could provide basic understanding of the pharmacokinetic profiles of fluoxetine and its metabolite under various situations.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Fluoxetina/análogos & derivados , Fluoxetina/farmacocinética , Inhibidores Selectivos de la Recaptación de Serotonina/farmacocinética , Área Bajo la Curva , Pueblo Asiatico , Humanos , Tasa de Depuración Metabólica , Modelos Biológicos , República de Corea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA