Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Immunol ; 15: 1363454, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487536

RESUMEN

Pediatric hepatoblastoma (HB) is the most common primary liver malignancy in infants and children. With great diversity and plasticity, tumor-infiltrating neutrophils were one of the most determining factors for poor prognosis in many malignant tumors. In this study, through bulk RNA sequencing for sorted blood and tumor-infiltrated neutrophils and comparison of neutrophils in tumor and para-tumor tissue by single-cell sequencing, we found that intratumoral neutrophils were composed of heterogenous functional populations at different development stages. Our study showed that terminally differentiated neutrophils with active ferroptosis prevailed in tumor tissue, whereas, in para-tumor, pre-fate naïve neutrophils were dominant and ferroptotic neutrophils dispersed in a broad spectrum of cell maturation. Gene profiling and in vitro T-cell coculture experiment confirmed that one of main functional intratumoral neutrophils was mainly immunosuppressive, which relied on the activation of ferroptosis. Combining the bulk RNA-seq, scRNA-seq data, and immunochemistry staining of tumor samples, CXCL12/CXCR4 chemotaxis pathway was suggested to mediate the migration of neutrophils in tumors as CXCR4 highly expressed by intratumoral neutrophils and its ligand CXCL12 expressed much higher level in tumor than that in para-tumor. Moreover, our study pinpointed that infiltrated CXCR4hi neutrophils, regardless of their differential distribution of cell maturation status in HB tumor and para-tumor regions, were the genuine perpetrators for immune suppression. Our data characterized the ferroptosis-dependent immunosuppression energized by intratumoral CXCR4 expression neutrophils and suggest a potential cell target for cancer immunotherapies.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Lactante , Niño , Humanos , Neutrófilos , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Hepatoblastoma/patología , Transducción de Señal , Quimiotaxis , Neoplasias Hepáticas/patología , Receptores CXCR4/metabolismo
2.
Clin Immunol ; 250: 109322, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37024023

RESUMEN

NK cells are one of key immune components in neuroblastoma (NB) surveillance and eradication. Glucose metabolism as a major source of fuel for NK activation is exquisitely regulated. Our data revealed a diminished NK activation and a disproportionally augmented CD56bright subset in NB. Further study showed that NK cells in NB presented with an arrested glycolysis accompanied by an elevated expression of the long noncoding RNA (lncRNA) EPB41L4A-AS1, a known crucial participant in glycolysis regulation, in the CD56bright NK subset. The inhibitory function of lncRNA EPB41L4A-AS1 was recapitulated. Interestingly, our study demonstrated that exosomal lncRNA EPB41L4A-AS1 was transferrable from CD56bright NK to CD56dim NK and was able to quench the glycolysis of target NK. Our data demonstrated that an arrested glycolysis in patient NK cells was associated with an elevated lncRNA in CD56bright NK subset and a cross-talk between heterogeneous NK subsets was achieved by transferring metabolic inhibitory lncRNA through exosomes.


Asunto(s)
Exosomas , Neuroblastoma , ARN Largo no Codificante , Humanos , Antígeno CD56 , Exosomas/metabolismo , Glucólisis , Células Asesinas Naturales , Neuroblastoma/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
3.
Immunol Lett ; 248: 16-25, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35691410

RESUMEN

T-cell exhaustion is one of the key reasons for attenuated T-cell cytotoxicity against tumours. At both the expression and epigenetic levels, a number of genes, including the transcription factor TOX, are believed to be implicated in regulating T-cell exhaustion. In the present study, we found that in NB patients, the ratio of exhausted T cells, featuring upregulated PD-1 and Tim-3, was increased. Meanwhile, the expression of inhibitory surface receptors, including Lag-3, CD160, VISTA and KLRG1, was also increased, but this was accompanied by a reduced ability to release the effector molecules IL-2, IFN-γ, TNF-α and Granzyme B in CD3+ T cells from NB patients. It is noteworthy that NB-derived memory T cells (Tm) showed more obvious exhausted characteristics than other T cells. Moreover, the T cells from NB patients possessed a higher potential for exhaustion conversion upon in vitro TCR stimulation in our time-course culture experiment. In NB patients, T-cell exhaustion was demonstrated to correlate with the elevated expression of TOX in freshly sorted CD3+ T cells as well as in anti-CD3 stimulated PBMCs. Most importantly, our data supported the idea that the hypomethylation of the TOX promoter may be one of the initiators that regulates TOX expression and enables TOX to play a crucial role in T-cell exhaustion reprogramming in NB patients.


Asunto(s)
Proteínas del Grupo de Alta Movilidad/metabolismo , Neuroblastoma , Factores de Transcripción , Linfocitos T CD8-positivos/patología , Regulación de la Expresión Génica , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Factores de Transcripción/genética
4.
Cell Death Discov ; 8(1): 139, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351861

RESUMEN

Neuroblastoma (NB) is the most common extracranial solid tumor and the treatment efficacy of high-risk NB is unsatisfactory. γδT-cell-based adoptive cell transfer is a promising approach for high-risk NB treatment. Our previous study has revealed that γδT cells in NB patients exhibit a poor proliferation activity and a decreased anti-tumor capacity in vitro. In the present study, we found that IL-15 could effectively enhance the proliferation of NB γδT cells, to a level that remains lower than healthy controls though. In addition, IL-15-fostered NB γδT cells robustly boosted cell survival against apoptosis induced by cytokines depletion. Our data revealed that Mcl-1 was a key anti-apoptotic protein in IL-15-fostered γδT cells during cytokine withdrawal and its expression was regulated via the activation of STAT5 and ERK. In addition, IL-2 and IL-15-fostered γδT cells harbored higher levels of tumoricidal capacity which is also beneficial for γδ T-cell based immune therapy in NB. Understanding the survival control of γδT cells in a sub-optimal cytokine supportive microenvironment will expedite the clinical application of γδT cells for immunotherapy.

5.
Allergy Asthma Clin Immunol ; 18(1): 10, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35148790

RESUMEN

BACKGROUND: Allergic rhinitis (AR) and allergic contact dermatitis (ACD) are prevalent allergic diseases and have significant impacts on patients' daily life. Despite many studies on AR or ACD have been conducted separately, little is known about the immune responses in patients of AR combined with ACD and the interplay between AR and ACD. Our study compared various aspects of immune elements in patients with AR or/and ACD, aiming to characterize the immune responses in AR, ACD, and AR combined with ACD. METHODS: A total of 57 patients diagnosed with AR or/and ACD and 28 healthy volunteers were included. AR patients were further divided into seasonal AR (SAR) and perennial AR (PAR). All subjects' blood samples were taken to assess the concentration of immunoglobulins, complement C3, C4, autoantibodies and cytokines in serum by immunoturbidimetry, ELISA or Luminex200 platform. Peripheral blood mononuclear cells (PBMCs) were subjected to the analysis of lymphocyte subpopulations by flow cytometry. RESULTS: It indicated that AR disease caused elevated levels of IgE, IgA, IgG, IgG4, as well as IL-4, IL-15, IL-8 and IL-6 in serum. AR patients possessed a decreased CD4/CD8 ratio and an increased proportion of memory CD4 + T-cell subset, with a skewed Th2 response and an enhanced CD8 + T-cell activation. Compared with patients with sole AR or ACD condition, AR + ACD patients presented with a significantly increased proportion of memory CD8 + T-cell subset and were prone to autoimmune disorders as indicated by the increased autoantibodies. The immune elements in patients with ACD only were least affected compared with those in other conditions. Additionally, seasonal or perennial AR patients exhibited different cytokine profiles and proportions of memory T-cell subsets. CONCLUSIONS: In this study, we illuminated the respective characteristics of immune responses in AR, ACD, and AR combined with ACD. Meanwhile, we discovered that the PAR and SAR patients possessed different cytokine profiles and T-cell compartments. It suggested that these allergic conditions belong to different disease entities. Characterizing the detailed immune changes in these allergic diseases would help to develop proper treatments targeting particular immune elements in different allergic diseases.

6.
Clin Immunol ; 222: 108641, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271370

RESUMEN

The mechanism of the characteristic intermittent hypoxia (IH) of obstructive sleep apnea syndrome (OSAS) on monocyte remain unclear. Our study found that OSAS children had a significantly upregulated expression in circulating proinflammatory cytokines IL-6 and IL-12, and endothelial injury markers VEGF and ICAM1. Association analysis revealed that the plasma TNFα, IL-1ß, IL-6, IL-10 and IL-12 concentration were negatively associated with the minimal SpO2, a negative index for disease severity. OSAS monocytes presented an inflammatory phenotype with higher mRNA levels of inflammatory cytokines. Importantly, we noted a significant decrease in T-cell immunoglobulin and mucin domain (Tim)-3 expression in OSAS monocytes with the increase of the plasma proinflammatory cytokines. In vitro assay demonstrated that IH induced THP-1 cell overactivation via NF-κB dependent pathway was inhibited by the Tim-3 signal. Our results indicated that activation of monocyte inflammatory responses is closely related to OSAS-induced IH, and negatively mediated by a Tim-3 signaling pathway.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Hipoxia/patología , Monocitos/metabolismo , Apnea Obstructiva del Sueño/patología , Receptor 2 Celular del Virus de la Hepatitis A/genética , Humanos , Inflamación/inmunología , Molécula 1 de Adhesión Intercelular/sangre , Subunidad p35 de la Interleucina-12/sangre , Interleucina-6/sangre , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/sangre
7.
J Gen Virol ; 101(12): 1242-1250, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33016861

RESUMEN

Post-translational modification plays a critical role in viral replication. Previously we reported that neddylation of PB2 of influenza A virus (IAV) can inhibit viral replication. However, we found that NEDD8 overexpression can still inhibit the replication of PB2 K699R mutant viruses, implying that other viral protein(s) can be neddylated. In this study, we revealed that M1 of IAV can also be modified by NEDD8. We found that the E3 ligase HDM2 significantly promotes M1 neddylation. Furthermore, we identified M1 K187 as the major neddylation site. We generated an IAV M1 K187R mutant (WSN-M1 K187R) and compared the growth of wild-type and mutant viruses in Madin-Darby canine kidney (MDCK) cells. The data showed that the replication of WSN-M1 K187R was more efficient than that of wild-type WSN. More importantly, we observed that overexpression of NEDD8 inhibited the replication of the wild-type WSN more effectively than that of WSN-M1 K187R. In addition, we found that the neddylation-deficient M1 mutant (M1 K187R) had a longer half-life than that of wild-type M1, indicating that the neddylation of M1 reduces stability. Then we performed a viral infection assay and found that WSN-M1 K187R exhibited greater virulence in mice than wild-type WSN, suggesting that the neddylation of M1 reduced IAV replication in vivo. In conclusion, we uncovered that neddylation of M1 by HDM2 negatively regulates the stability of M1, which in turn inhibits viral replication.


Asunto(s)
Virus de la Influenza A/fisiología , Proteína NEDD8/metabolismo , Infecciones por Orthomyxoviridae/virología , Proteínas de la Matriz Viral/metabolismo , Replicación Viral , Animales , Línea Celular , Femenino , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Virus de la Influenza A/patogenicidad , Lisina/genética , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/patología , Estabilidad Proteica , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de la Matriz Viral/genética , Virulencia
8.
BMC Immunol ; 21(1): 53, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33036556

RESUMEN

BACKGROUND: Henoch-Schonlein purpura (HSP) is the most common systemic vasculitis of the childhood. However, its mechanisms and pathogenesis still need more exploration. Natural killer (NK) cells are innate lymphocytes, and there is a growing appreciation that cellular metabolism is important in determining the immune responsiveness of lymphocytes. Thus, we aimed to analyze the NK cells phenotype and explore the association between glucose metabolism and NK cells function in HSP patients. RESULTS: A total number of 64 HSP patients and 34 healthy children were included. The HSP patients were divided into two groups according to whether accompanied with nephritis or not. NK cells in HSP patients without nephritis showed a reduced frequency in peripheral blood, a down-regulated expression of activating receptors both NKp30 and NKp46, and an attenuated cytotoxic function against tumor cells. In addition, the function impairment of NK cells was shown to exacerbate in HSPN. Our data further revealed an aberrant metabolic reprogramming of NK cells in HSP patients. Upon stimulation with cytokines (IL-15, IL-12 and IL-2), NK cells from healthy controls switched to an elevated glycolysis rate to support their effector function. By contrast, the glycolysis rate of activated NK cells in HSP group was not significantly up-regulated from the resting level possibly owing to the inhibition of mTORC1. CONCLUSIONS: Our study found that HSP patients were accompanied with dysfunction of NK cells. We concluded that the dysfunction of NK cells in HSP patients was induced with a decreased glycolysis rate and suggested that metabolic reprogramming of NK cells might be a player in the pathogenesis of HSP.


Asunto(s)
Glucólisis/fisiología , Vasculitis por IgA/inmunología , Células Asesinas Naturales/inmunología , Células Cultivadas , Reprogramación Celular , Niño , Citocinas/metabolismo , Citotoxicidad Inmunológica , Femenino , Humanos , Vasculitis por IgA/metabolismo , Activación de Linfocitos , Masculino , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Receptor 3 Gatillante de la Citotoxidad Natural/metabolismo , Nefritis
9.
Clin Immunol ; 211: 108343, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31931123

RESUMEN

Neuroblastoma (NB) is the most common solid extracranial malignancy in children with a considerable chance of metastatic progression. Prevalent evidence supports the anti-tumor role of γδT cells and these cells have been testing in clinical trials for constraining tumor growth. A small subpopulation of γδT cells releasing IL-17, however, were demonstrated to exert tumor-promoting effects in many aspects. In this study, we found an augment of IL-17+ γδT cells both in in vitro PAM-stimulated γδT-cell expanding culture and circulating γδT cells in NB patients. These patient-origin cells expanded in vitro by PAM in the presence of IL-17 polarizing condition were shown to promote the proliferation and migration of NB cells. Furthermore, an intrinsic preference for IL-17 polarization in NB γδT cells was revealed by mRNA microarray and Western Blot, which pointed to an up-regulated expression of multiple Th17-development related genes in addition to an increased phosphorylation level of STAT3.


Asunto(s)
Interleucina-17/inmunología , Linfocitos Intraepiteliales/inmunología , Neuroblastoma/inmunología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Preescolar , Femenino , Humanos , Masculino , Neuroblastoma/patología
10.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31434735

RESUMEN

Previously, we identified a set of long noncoding RNAs (lncRNAs) that were differentially expressed in influenza A virus (IAV)-infected cells. In this study, we focused on lnc-MxA, which is upregulated during IAV infection. We found that the overexpression of lnc-MxA facilitates the replication of IAV, while the knockdown of lnc-MxA inhibits viral replication. Further studies demonstrated that lnc-MxA is an interferon-stimulated gene. However, lnc-MxA inhibits the Sendai virus (SeV)- and IAV-induced activation of beta interferon (IFN-ß). A luciferase assay indicated that lnc-MxA inhibits the activation of the IFN-ß reporter upon stimulation with RIG-I, MAVS, TBK1, or active IRF3 (IRF3-5D). These data indicated that lnc-MxA negatively regulates the RIG-I-mediated antiviral immune response. A chromatin immunoprecipitation (ChIP) assay showed that the enrichment of IRF3 and p65 at the IFN-ß promoter in lnc-MxA-overexpressing cells was significantly lower than that in control cells, indicating that lnc-MxA interfered with the binding of IRF3 and p65 to the IFN-ß promoter. Chromatin isolation by RNA purification (ChIRP), triplex pulldown, and biolayer interferometry assays indicated that lnc-MxA can bind to the IFN-ß promoter. Furthermore, an electrophoretic mobility shift assay (EMSA) showed that lnc-MxA can form complexes with the IFN-ß promoter fragment. These results demonstrated that lnc-MxA can form a triplex with the IFN-ß promoter to interfere with the activation of IFN-ß transcription. Using a vesicular stomatitis virus (VSV) infection assay, we confirmed that lnc-MxA can repress the RIG-I-like receptor (RLR)-mediated antiviral immune response and influence the antiviral status of cells. In conclusion, we revealed that lnc-MxA is an interferon-stimulated gene (ISG) that negatively regulates the transcription of IFN-ß by forming an RNA-DNA triplex.IMPORTANCE IAV can be recognized as a nonself molecular pattern by host immune systems and can cause immune responses. However, the intense immune response induced by influenza virus, known as a "cytokine storm," can also cause widespread tissue damage (X. Z. J. Guo and P. G. Thomas, Semin Immunopathol 39:541-550, 2017, https://doi.org/10.1007/s00281-017-0636-y; S. Yokota, Nihon Rinsho 61:1953-1958, 2003; I. A. Clark, Immunol Cell Biol 85:271-273, 2007). Meanwhile, the detailed mechanisms involved in the balancing of immune responses in host cells are not well understood. Our studies reveal that, as an IFN-inducible gene, lnc-MxA functions as a negative regulator of the antiviral immune response. We uncovered the mechanism by which lnc-MxA inhibits the activation of IFN-ß transcription. Our findings demonstrate that, as an ISG, lnc-MxA plays an important role in the negative-feedback loop involved in maintaining immune homeostasis.


Asunto(s)
Interferón beta/genética , Regiones Promotoras Genéticas , ARN Largo no Codificante/metabolismo , Transcripción Genética , Células A549 , Sitios de Unión , Expresión Génica , Células HEK293 , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Proteínas de Resistencia a Mixovirus/genética , ARN Largo no Codificante/genética , Factor de Transcripción ReIA/metabolismo , Virosis/inmunología , Virosis/virología , Replicación Viral , Virus/clasificación , Virus/inmunología
11.
Sci Rep ; 9(1): 11593, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406141

RESUMEN

Chronic hepatitis B virus infection is a major risk factor for hepatocellular carcinoma. HBV infection affects lncRNA expression in infected cells, but the detailed mechanism and biological significance are not yet clear. In this study, we focused on exploring the function of the HBV-upregulated lncRNA SAMD12-AS1 in cell proliferation. We found that there is a higher level of SAMD12-AS1 expression in tumors than in adjacent nontumorous liver tissues. We showed that ectopic expression of SAMD12-AS1 promotes cell growth and blocks apoptosis, while knockdown of SAMD12-AS1 inhibits cell proliferation and enhances etoposide-induced apoptosis. Using RNA immunoprecipitation and mass spectrometry, we determined that SAMD12-AS1 interacts with NPM1 and confirmed that SAMD12-AS1(1-350) is required for the interaction with NPM1. As it is known that NPM1 interacts with the E3 ligase HDM2 and reduces HDM2-mediated p53 degradation, we examined whether SAMD12-AS1 can affect p53 stability. Overexpression of SAMD12-AS1 caused a reduction in p53 protein levels by shortening its half-life. Conversely, knockdown of SAMD12-AS1 prolonged the half-life of p53. We further demonstrated that SAMD12-AS1 increased the interaction of HDM2 and p53 and enhanced p53 ubiquitination. Our findings reveal that HBV-upregulated SAMD12-AS1 regulates cell proliferation and apoptosis via the NPM1-HDM2-p53 axis.


Asunto(s)
Apoptosis/fisiología , Proliferación Celular/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/fisiología , Humanos , Proteínas del Tejido Nervioso/metabolismo , Nucleofosmina , Unión Proteica , ARN Largo no Codificante/metabolismo
12.
J Virol ; 92(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29899085

RESUMEN

Long noncoding RNAs (lncRNAs) are involved in many aspects of cellular processes, including the antiviral immune response. To identify influenza A virus (IAV)-related lncRNAs, we performed RNA deep sequencing to compare the profiles of lncRNAs in A549 and HEK293T cells with or without IAV infection. We identified an IAV-upregulated lncRNA named lnc-ISG20 because it shares most of its sequence with ISG20. We found that lnc-ISG20 is an interferon-stimulated gene similar to ISG20. Overexpression of lnc-ISG20 inhibited IAV replication, while lnc-ISG20 knockdown favored viral replication, suggesting that lnc-ISG20 is inhibitory to IAV replication. Further study indicated that overexpression of lnc-ISG20 enhances ISG20 protein levels, while knockdown of lnc-ISG20 reduces ISG20 protein levels in A549 cells induced with poly(I·C) and Sendai virus. We demonstrated that lnc-ISG20 inhibits IAV replication in an ISG20-dependent manner. As lnc-ISG20 did not affect the mRNA level of ISG20, we postulated that lnc-ISG20 may function as endogenous RNA competing with ISG20 to enhance its translation. Indeed, we identified that microRNA 326 (miR-326) is a mutual microRNA for both ISG20 and lnc-ISG20 that targets the 3' untranslated region of ISG20 mRNA to inhibit its translation. We confirmed that lnc-ISG20 can bind miR-326, which in turn decreased the amount of miR-326 bound to ISG20 mRNA. In conclusion, we identified that the IAV-upregulated lnc-ISG20 is a novel interferon-stimulated gene that elicits its inhibitory effect on IAV replication by enhancing ISG20 expression. We demonstrated that lnc-ISG20 functions as a competitive endogenous RNA to bind miR-326 to reduce its inhibition of ISG20 translation. Our results revealed the mechanism by which lnc-ISG20 inhibits IAV replication.IMPORTANCE The replication of influenza A virus is regulated by host factors. However, the mechanisms by which lncRNAs regulate IAV infection are not well understood. We identified that lnc-ISG20 is upregulated during IAV infection and is also an interferon-stimulated gene. We demonstrated that lnc-ISG20 can enhance ISG20 expression, which in turn inhibits IAV replication. Our studies indicate that lnc-ISG20 functions as a competing endogenous RNA that binds miR-326 and reduces its inhibitory effect on ISG20. Taken together, our findings reveal the mechanistic details of lnc-ISG20 negatively regulating IAV replication. These findings indicate that lnc-ISG20 plays an important role during the host antiviral immune response.


Asunto(s)
Exonucleasas/biosíntesis , Expresión Génica , Virus de la Influenza A/inmunología , Virus de la Influenza A/fisiología , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Replicación Viral , Células A549 , Exorribonucleasas , Células HEK293 , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA