Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
IEEE Trans Pattern Anal Mach Intell ; 45(12): 15870-15882, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37505999

RESUMEN

Tree-like structures are common, naturally occurring objects that are of interest to many fields of study, such as plant science and biomedicine. Analysis of these structures is typically based on skeletons extracted from captured data, which often contain spurious cycles that need to be removed. We propose a dynamic programming algorithm for solving the NP-hard tree recovery problem formulated by (Estrada et al. 2015), which seeks a least-cost partitioning of the graph nodes that yields a directed tree. Our algorithm finds the optimal solution by iteratively contracting the graph via node-merging until the problem can be trivially solved. By carefully designing the merging sequence, our algorithm can efficiently recover optimal trees for many real-world data where (Estrada et al. 2015) only produces sub-optimal solutions. We also propose an approximate variant of dynamic programming using beam search, which can process graphs containing thousands of cycles with significantly improved optimality and efficiency compared with (Estrada et al. 2015).

2.
BMC Infect Dis ; 23(1): 374, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277736

RESUMEN

BACKGROUND: University students commonly received COVID-19 vaccinations before returning to U.S. campuses in the Fall of 2021. Given likely immunologic variation among students based on differences in type of primary series and/or booster dose vaccine received, we conducted serologic investigations in September and December 2021 on a large university campus in Wisconsin to assess anti-SARS-CoV-2 antibody levels. METHODS: We collected blood samples, demographic information, and COVID-19 illness and vaccination history from a convenience sample of students. Sera were analyzed for both anti-spike (anti-S) and anti-nucleocapsid (anti-N) antibody levels using World Health Organization standardized binding antibody units per milliliter (BAU/mL). Levels were compared across categorical primary COVID-19 vaccine series received and binary COVID-19 mRNA booster status. The association between anti-S levels and time since most recent vaccination dose was estimated by mixed-effects linear regression. RESULTS: In total, 356 students participated, of whom 219 (61.5%) had received a primary vaccine series of Pfizer-BioNTech or Moderna mRNA vaccines and 85 (23.9%) had received vaccines from Sinovac or Sinopharm. Median anti-S levels were significantly higher for mRNA primary vaccine series recipients (2.90 and 2.86 log [BAU/mL], respectively), compared with those who received Sinopharm or Sinovac vaccines (1.63 and 1.95 log [BAU/mL], respectively). Sinopharm and Sinovac vaccine recipients were associated with a significantly faster anti-S decline over time, compared with mRNA vaccine recipients (P <.001). By December, 48/172 (27.9%) participants reported receiving an mRNA COVID-19 vaccine booster, which reduced the anti-S antibody discrepancies between primary series vaccine types. CONCLUSIONS: Our work supports the benefit of heterologous boosting against COVID-19. COVID-19 mRNA vaccine booster doses were associated with increases in anti-SARS-CoV-2 antibody levels; following an mRNA booster dose, students with both mRNA and non-mRNA primary series receipt were associated with comparable levels of anti-S IgG.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Wisconsin/epidemiología , Universidades , Anticuerpos Antivirales , ARN Mensajero
3.
New Phytol ; 238(6): 2427-2439, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36918471

RESUMEN

Plant responses to abiotic environmental challenges are known to have lasting effects on the plant beyond the initial stress exposure. Some of these lasting effects are transgenerational, affecting the next generation. The plant response to elevated carbon dioxide (CO2 ) levels has been well studied. However, these investigations are typically limited to plants grown for a single generation in a high CO2 environment while transgenerational studies are rare. We aimed to determine transgenerational growth responses in plants after exposure to high CO2 by investigating the direct progeny when returned to baseline CO2 levels. We found that both the flowering plant Arabidopsis thaliana and seedless nonvascular plant Physcomitrium patens continue to display accelerated growth rates in the progeny of plants exposed to high CO2 . We used the model species Arabidopsis to dissect the molecular mechanism and found that DNA methylation pathways are necessary for heritability of this growth response. More specifically, the pathway of RNA-directed DNA methylation is required to initiate methylation and the proteins CMT2 and CMT3 are needed for the transgenerational propagation of this DNA methylation to the progeny plants. Together, these two DNA methylation pathways establish and then maintain a cellular memory to high CO2 exposure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metilación de ADN/genética , Dióxido de Carbono/farmacología , Dióxido de Carbono/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Vaccine ; 40(33): 4845-4855, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35803846

RESUMEN

BACKGROUND: COVID-19 vaccination reduces SARS-CoV-2 infection and transmission. However, evidence is emerging on the degree of protection across variants and in high-transmission settings. To better understand the protection afforded by vaccination specifically in a high-transmission setting, we examined household transmission of SARS-CoV-2 during a period of high community incidence with predominant SARS-CoV-2 B.1.1.7 (Alpha) variant, among vaccinated and unvaccinated contacts. METHODS: We conducted a household transmission investigation in San Diego County, California, and Denver, Colorado, during January-April 2021. Households were enrolled if they had at least one person with documented SARS-CoV-2 infection. We collected nasopharyngeal swabs, blood, demographic information, and vaccination history from all consenting household members. We compared infection risks (IRs), RT-PCR cycle threshold values, SARS-CoV-2 culture results, and antibody statuses among vaccinated and unvaccinated household contacts. RESULTS: We enrolled 493 individuals from 138 households. The SARS-CoV-2 variant was identified from 121/138 households (88%). The most common variants were Alpha (75/121, 62%) and Epsilon (19/121, 16%). There were no households with discordant lineages among household members. One fully vaccinated secondary case was symptomatic (13%); the other 5 were asymptomatic (87%). Among unvaccinated secondary cases, 105/108 (97%) were symptomatic. Among 127 households with a single primary case, the IR for household contacts was 45% (146/322; 95% Confidence Interval [CI] 40-51%). The observed IR was higher in unvaccinated (130/257, 49%, 95% CI 45-57%) than fully vaccinated contacts (6/26, 23%, 95% CI 11-42%). A lower proportion of households with a fully vaccinated primary case had secondary cases (1/5, 20%) than households with an unvaccinated primary case (66/108, 62%). CONCLUSIONS: Although SARS-CoV-2 infections in vaccinated household contacts were reported in this high transmission setting, full vaccination protected against SARS-CoV-2 infection. These findings further support the protective effect of COVID-19 vaccination and highlight the need for ongoing vaccination among eligible persons.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , California/epidemiología , Colorado/epidemiología , Humanos
5.
Proc Natl Acad Sci U S A ; 117(43): 26946-26954, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33028676

RESUMEN

Remdesivir is a broad-spectrum antiviral nucleotide prodrug that has been clinically evaluated in Ebola virus patients and recently received emergency use authorization (EUA) for treatment of COVID-19. With approvals from the Federal Select Agent Program and the Centers for Disease Control and Prevention's Institutional Biosecurity Board, we characterized the resistance profile of remdesivir by serially passaging Ebola virus under remdesivir selection; we generated lineages with low-level reduced susceptibility to remdesivir after 35 passages. We found that a single amino acid substitution, F548S, in the Ebola virus polymerase conferred low-level reduced susceptibility to remdesivir. The F548 residue is highly conserved in filoviruses but should be subject to specific surveillance among novel filoviruses, in newly emerging variants in ongoing outbreaks, and also in Ebola virus patients undergoing remdesivir therapy. Homology modeling suggests that the Ebola virus polymerase F548 residue lies in the F-motif of the polymerase active site, a region that was previously identified as susceptible to resistance mutations in coronaviruses. Our data suggest that molecular surveillance of this region of the polymerase in remdesivir-treated COVID-19 patients is also warranted.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Betacoronavirus/enzimología , Ebolavirus/enzimología , ARN Polimerasa Dependiente del ARN/química , Proteínas no Estructurales Virales/química , Adenosina Monofosfato/farmacología , Alanina/farmacología , Betacoronavirus/química , Línea Celular , Tolerancia a Medicamentos/genética , Ebolavirus/efectos de los fármacos , Ebolavirus/genética , Humanos , Modelos Moleculares , Mutación , ARN Polimerasa Dependiente del ARN/genética , SARS-CoV-2 , Proteínas no Estructurales Virales/genética , Replicación Viral/efectos de los fármacos
6.
Lancet Infect Dis ; 19(9): 1023-1032, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31300330

RESUMEN

BACKGROUND: The ongoing Ebola virus outbreak in the Ituri and North Kivu Provinces of the Democratic Republic of the Congo, which began in July, 2018, is the second largest ever recorded. Despite civil unrest, outbreak control measures and the administration of experimental therapies and a vaccine have been initiated. The aim of this study was to test the efficacy of candidate therapies and diagnostic tests with the outbreak strain Ituri Ebola virus. Lacking a virus isolate from this outbreak, a recombinant Ituri Ebola virus was compared with a similarly engineered Makona virus from the 2013-16 outbreak. METHODS: Using Ebola virus sequences provided by organisations in DR Congo and a reverse genetics system, we generated an authentic Ebola virus from the ongoing outbreak in Ituri and North Kivu provinces. To relate this virus to other Ebola viruses in DR Congo, we did a phylogenetic analysis of representative complete Ebola virus genome sequences from previous outbreaks. We evaluated experimental therapies being tested in clinical trials in DR Congo, including remdesivir and ZMapp monoclonal antibodies, for their ability to inhibit the growth of infectious Ituri Ebola virus in cell culture. We also tested diagnostic assays for detection of the Ituri Ebola virus sequence. FINDINGS: The phylogenetic analysis of whole-genome sequences from each Ebola virus outbreak suggests there are at least two Ebola virus strains in DR Congo, which have independently crossed into the human population. The Ituri Ebola strain initially grew slower than the Makona strain, yet reached similar mean yields of 3 × 107 50% tissue culture infectious dose by 72 h infection in Huh-7 cells. Ituri Ebola virus was similar to Makona in its susceptibility to inhibition by remdesivir and to neutralisation by monoclonal antibodies from ZMapp and other monoclonal antibodies. Remdesivir inhibited Ituri Ebola virus at a 50% effective concentration (EC50) of 12nM (with a selectivity index of 303) and Makona Ebola virus at 13nM (with a selectivity index of 279). The Zmapp monoclonal antibodies 2G4 and 4G7 neutralised Ituri Ebola virus with a mean EC50 of 0·24 µg/mL and 0·48 µg/mL, and Makona Ebola virus with a mean EC50 of 0·45 µg/mL and 0·2 µg/mL. The Xpert Ebola and US Centers for Disease Control and Prevention real-time RT-qPCR diagnostic assays detected Ituri and Makona Ebola virus sequences with similar sensitivities and efficiencies, despite primer site binding mismatches in the Ituri Ebola virus. INTERPRETATION: Our findings provide a rationale for the continued testing of investigational therapies, confirm the effectiveness of the diagnostic assays used in the region, and establish a paradigm for the use of reverse genetics to inform response activities in an outbreak. FUNDING: US Centers for Disease Control and Prevention.


Asunto(s)
Antivirales/farmacología , ADN Viral/análisis , Brotes de Enfermedades , Ebolavirus/efectos de los fármacos , Ebolavirus/genética , Fiebre Hemorrágica Ebola/epidemiología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Amiodarona/farmacología , Antiarrítmicos/farmacología , Anticuerpos Monoclonales/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Línea Celular , República Democrática del Congo/epidemiología , Humanos , Filogenia , Ribavirina/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/farmacología , Toremifeno/farmacología , Verapamilo/farmacología , Cultivo de Virus , Secuenciación Completa del Genoma
7.
J Infect Dis ; 219(11): 1716-1721, 2019 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-30590775

RESUMEN

Although bats are increasingly being recognized as natural reservoir hosts of emerging zoonotic viruses, little is known about how they control and clear virus infection in the absence of clinical disease. Here, we test >50 convalescent sera from Egyptian rousette bats (ERBs) experimentally primed or prime-boosted with Marburg virus, Ebola virus, or Sosuga virus for the presence of virus-specific neutralizing antibodies, using infectious reporter viruses. After serum neutralization testing, we conclude that antibody-mediated virus neutralization does not contribute significantly to the control and clearance of Marburg virus, Ebola virus, or Sosuga virus infection in ERBs.


Asunto(s)
Quirópteros/virología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Enfermedad del Virus de Marburg/inmunología , Marburgvirus/inmunología , Paramyxoviridae/inmunología , Animales , Anticuerpos Antivirales/inmunología , Convalecencia , Reservorios de Enfermedades/virología , Egipto/epidemiología , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunidad Humoral , Enfermedad del Virus de Marburg/virología , Pruebas de Neutralización
8.
Artículo en Inglés | MEDLINE | ID: mdl-30533642

RESUMEN

Monongahela hantavirus was first identified in deer mice and was later found responsible for hantavirus pulmonary syndrome cases in Pennsylvania and West Virginia in the United States. Here, we report the complete sequences of Monongahela virus S, M, and L genomic segments obtained from a fatal clinical case reported in 1997.

9.
PLoS One ; 13(8): e0201827, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30071116

RESUMEN

Filoviruses are notorious viral pathogens responsible for high-consequence diseases in humans and non-human primates. Transcription of filovirus mRNA shares several common features with transcription in other non-segmented negative-strand viruses, including differential expression of genes located across the viral genome. Transcriptional patterns of Ebola virus (EBOV) and Marburg virus (MARV) have been previously described using traditional, laborious methods, such as northern blots and in vivo labeling of viral mRNAs. More recently, however, the availability of the next generation sequencing (NGS) technology has offered a more straightforward approach to assess transcriptional patterns. In this report, we analyzed the transcription patterns of four ebolaviruses-EBOV, Sudan (SUDV), Bundibugyo (BDBV), and Reston (RESTV) viruses-in two different cell lines using standard NGS library preparation and sequencing protocols. In agreement with previous reports mainly focused on EBOV and MARV, the remaining filoviruses used in this study also showed a consistent transcription pattern, with only minor variations between the different viruses. We have also analyzed the proportions of the three mRNAs transcribed from the GP gene, which are characteristic of the genus Ebolavirus and encode the glycoprotein (GP), the soluble GP (sGP), and the small soluble GP (ssGP). In addition, we used NGS methodology to analyze the transcription pattern of two previously described recombinant MARV. This analysis allowed us to correct our construction design, and to make an improved version of the original MARV expressing reporter genes.


Asunto(s)
Infecciones por Filoviridae/metabolismo , Filoviridae/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Transcripción Genética , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Humanos , Hígado/metabolismo , Hígado/virología , Macrófagos/metabolismo , Macrófagos/virología , Temperatura
10.
Artículo en Inglés | MEDLINE | ID: mdl-30050872

RESUMEN

Genome reassortment in Lassa virus (LASV) has been reported in nature, but phenotypic consequences of this phenomenon are not well described. Here we characterize, both in vitro and in vivo, reassortment between 2 LASV strains: the prototypic 1976 Josiah strain and a more recently isolated 2015 Liberian strain. In vitro analysis showed that although cis- and trans-acting elements of viral RNA synthesis were compatible between strains, reassortants demonstrated different levels of viral replication. These differences were also apparent in vivo, as reassortants varied in pathogenicity in the guinea pig model of LASV infection. The reassortant variant containing the Josiah S segment retained the virulence of the parental Josiah strain, but the reassortant variant containing the S segment of the Liberian isolate was highly attenuated compared to both parental strains. Contrary to observations in reassortants between LASV and other arenavirus species, which suggest that L segment-encoded factors are responsible for virulence, these studies highlight a role for S segment-encoded virulence factors in disease, and also suggest that inefficient interactions between proteins of heterologous strains may limit the prevalence of reassortant LASV variants in nature.


Asunto(s)
Fiebre de Lassa/patología , Fiebre de Lassa/virología , Virus Lassa/patogenicidad , Virus Reordenados/patogenicidad , Factores de Virulencia/genética , Animales , Modelos Animales de Enfermedad , Cobayas , Virus Lassa/genética , Virus Reordenados/genética , Virus Reordenados/fisiología , Virulencia , Replicación Viral
11.
PLoS Negl Trop Dis ; 12(3): e0006326, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29522528

RESUMEN

Sosuga virus (SOSV) is a recently discovered zoonotic paramyxovirus isolated from a single human case in 2012; it has been ecologically and epidemiologically associated with transmission by the Egyptian rousette bat (Rousettus aegyptiacus). Bats have long been recognized as sources of novel zoonotic pathogens, including highly lethal paramyxoviruses like Nipah virus (NiV) and Hendra virus (HeV). The ability of SOSV to cause severe human disease supports the need for studies on SOSV pathogenesis to better understand the potential impact of this virus and to identify effective treatments. Here we describe a reverse genetics system for SOSV comprising a minigenome-based assay and a replication-competent infectious recombinant reporter SOSV that expresses the fluorescent protein ZsGreen1 in infected cells. First, we used the minigenome assay to rapidly screen for compounds inhibiting SOSV replication at biosafety level 2 (BSL-2). The antiviral activity of candidate compounds was then tested against authentic viral replication using the reporter SOSV at BSL-3. We identified several compounds with anti-SOSV activity, several of which also inhibit NiV and HeV. Alongside its utility in screening for potential SOSV therapeutics, the reverse genetics system described here is a powerful tool for analyzing mechanisms of SOSV pathogenesis, which will facilitate our understanding of how to combat the potential public health threats posed by emerging bat-borne paramyxoviruses.


Asunto(s)
Antivirales/farmacología , Paramyxoviridae/genética , Genética Inversa/métodos , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Quirópteros/virología , Humanos , Paramyxoviridae/fisiología , Infecciones por Paramyxoviridae/virología
12.
PLoS One ; 12(5): e0178224, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28542463

RESUMEN

Reston virus (family Filoviridae) is unique among the viruses of the Ebolavirus genus in that it is considered non-pathogenic in humans, in contrast to the other members which are highly virulent. The virus has however, been associated with several outbreaks of highly lethal hemorrhagic fever in non-human primates (NHPs), specifically cynomolgus monkeys (Macaca fascicularis) originating in the Philippines. In addition, Reston virus has been isolated from domestic pigs in the Philippines. To better understand virus spillover events and potential adaption to new hosts, the whole genome sequences of representative Reston virus isolates were obtained using a next generation sequencing (NGS) approach and comparative genomic analysis and virus fitness analyses were performed. Nine virus genome sequences were completed for novel and previously described isolates obtained from a variety of hosts including a human case, non-human primates and pigs. Results of phylogenetic analysis of the sequence differences are consistent with multiple independent introductions of RESTV from a still unknown natural reservoir into non-human primates and swine farming operations. No consistent virus genetic markers were found specific for viruses associated with primate or pig infections, but similar to what had been seen with some Ebola viruses detected in the large Western Africa outbreak in 2014-2016, a truncated version of VP30 was identified in a subgroup of Reston viruses obtained from an outbreak in pigs 2008-2009. Finally, the genetic comparison of two closely related viruses, one isolated from a human case and one from an NHP, showed amino acid differences in the viral polymerase and detectable differences were found in competitive growth assays on human and NHP cell lines.


Asunto(s)
Filoviridae/genética , Genoma Viral/genética , Animales , Brotes de Enfermedades/veterinaria , Ebolavirus/genética , Ebolavirus/patogenicidad , Filoviridae/patogenicidad , Infecciones por Filoviridae/veterinaria , Infecciones por Filoviridae/virología , Marcadores Genéticos/genética , Fiebre Hemorrágica Ebola/veterinaria , Fiebre Hemorrágica Ebola/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Macaca fascicularis/virología , Porcinos/virología
13.
Virology ; 501: 147-165, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27930961

RESUMEN

Filoviruses are highly lethal in humans and nonhuman primates, likely due to potent antagonism of host interferon (IFN) responses early in infection. Filoviral protein VP35 is implicated as the major IFN induction antagonist, while Ebola virus (EBOV) VP24 or Marburg virus (MARV) VP40 are known to block downstream IFN signaling. Despite progress elucidating EBOV and MARV antagonist function, those for most other filoviruses, including Reston (RESTV), Sudan (SUDV), Taï Forest (TAFV), Bundibugyo (BDBV) and Ravn (RAVV) viruses, remain largely neglected. Thus, using standardized vectors and reporter assays, we characterized activities by each IFN antagonist from all known ebolavirus and marburgvirus species side-by-side. We uncover noncanonical suppression of IFN induction by ebolavirus VP24, differing potencies by MARV and RAVV proteins, and intriguingly, weaker antagonism by VP24 of RESTV. These underlying molecular explanations for differential virulence in humans could guide future investigations of more-neglected filoviruses as well as treatment and vaccine studies.


Asunto(s)
Ebolavirus/metabolismo , Fiebre Hemorrágica Ebola/virología , Interferones/antagonistas & inhibidores , Enfermedad del Virus de Marburg/virología , Marburgvirus/metabolismo , Proteínas Virales/metabolismo , Animales , Ebolavirus/genética , Genes Reporteros , Interacciones Huésped-Patógeno , Humanos , Interferones/metabolismo , Marburgvirus/genética , Proteínas Virales/genética
14.
mBio ; 7(6)2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27999160

RESUMEN

Lassa virus (LASV) infection is a major public health concern due to high fatality rates and limited effective treatment. The interferon-stimulated gene cholesterol 25-hydroxylase (CH25H) encodes an enzyme that catalyzes the production of 25-hydroxycholesterol (25HC). 25HC is involved in regulating cholesterol biosynthesis and has recently been identified as a potent antiviral targeting enveloped virus entry. Here, we show a previously unrecognized role of CH25H in inhibiting LASV glycoprotein glycosylation and the production of infectious virus. Overexpression of CH25H or treatment with 25HC decreased LASV G1 glycoprotein N-glycan maturation and reduced the production of infectious LASV. Depletion of endogenous CH25H using small interfering RNA (siRNA) enhanced the levels of fully glycosylated G1 and increased infectious LASV production. Finally, LASV particles produced from 25HC-treated cells were found to be less infectious, to incorporate aberrantly glycosylated GP1 species, and to be defective in binding alpha-dystroglycan, an attachment and entry receptor. Our findings identify a novel role for CH25H in controlling LASV propagation and indicate that manipulation of the expression of CH25H or the administration of 25HC may be a useful anti-LASV therapy. IMPORTANCE: Lassa fever is an acute viral hemorrhagic fever in humans caused by Lassa virus (LASV). No vaccine for LASV is currently available. Treatment is limited to the administration of ribavirin, which is only effective when given early in the course of illness. Cholesterol 25-hydroxylase (CH25H) is a recently identified interferon-stimulated gene (ISG); it encodes an enzyme that catalyzes the production of 25-hydroxycholesterol (25HC), which inhibits several viruses. Here, we identify a novel antiviral mechanism of 25HC that is dependent on inhibiting the glycosylation of Lassa virus (LASV) glycoprotein and reducing the infectivity of LASV as a means of suppressing viral replication. Since N-linked glycosylation is a critical feature of other enveloped-virus glycoproteins, 25HC may be a broad inhibitor of virus infectivity.


Asunto(s)
Antivirales/farmacología , Hidroxicolesteroles/farmacología , Virus Lassa/efectos de los fármacos , Virus Lassa/metabolismo , Animales , Línea Celular , Glicosilación/efectos de los fármacos , Humanos , Virus Lassa/química , ARN Interferente Pequeño , Esteroide Hidroxilasas/genética , Esteroide Hidroxilasas/metabolismo , Proteínas del Envoltorio Viral , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
15.
Antiviral Res ; 136: 9-18, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27771389

RESUMEN

Lassa virus (LASV) and Ebola virus (EBOV) infections are important global health issues resulting in significant morbidity and mortality. While several promising drug and vaccine trials for EBOV are ongoing, options for LASV infection are currently limited to ribavirin treatment. A major factor impeding the development of antiviral compounds to treat these infections is the need to manipulate the virus under BSL-4 containment, limiting research to a few institutes worldwide. Here we describe the development of a novel LASV minigenome assay based on the ambisense LASV S segment genome, with authentic terminal untranslated regions flanking a ZsGreen (ZsG) fluorescent reporter protein and a Gaussia princeps luciferase (gLuc) reporter gene. This assay, along with a similar previously established EBOV minigenome, was optimized for high-throughput screening (HTS) of potential antiviral compounds under BSL-2 containment. In addition, we rescued a recombinant LASV expressing ZsG, which, in conjunction with a recombinant EBOV reporter virus, was used to confirm any potential antiviral hits in vitro. Combining an initial screen to identify potential antiviral compounds at BSL-2 containment before progressing to HTS with infectious virus will reduce the amount of expensive and technically challenging BSL-4 containment research. Using these assays, we identified 6-azauridine as having anti-LASV activity, and demonstrated its anti-EBOV activity in human cells. We further identified 2'-deoxy-2'-fluorocytidine as having potent anti-LASV activity, with an EC50 value 10 times lower than that of ribavirin.


Asunto(s)
Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Ebolavirus/genética , Virus Lassa/efectos de los fármacos , Virus Lassa/genética , Antivirales/química , Azauridina/farmacología , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Descubrimiento de Drogas/métodos , Genes Reporteros , Genoma Viral , Proteínas Fluorescentes Verdes/genética , Fiebre Hemorrágica Ebola , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Fiebre de Lassa , Luciferasas/genética
16.
J Infect Dis ; 214(suppl 3): S258-S262, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27587631

RESUMEN

During the Ebola virus outbreak of 2013-2016, the Viral Special Pathogens Branch field laboratory in Sierra Leone tested approximately 26 000 specimens between August 2014 and October 2015. Analysis of the B2M endogenous control Ct values showed its utility in monitoring specimen quality, comparing results with different specimen types, and interpretation of results. For live patients, blood is the most sensitive specimen type and oral swabs have little diagnostic utility. However, swabs are highly sensitive for diagnostic testing of corpses.


Asunto(s)
Brotes de Enfermedades , Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/diagnóstico , ARN Viral/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Servicios de Laboratorio Clínico , Ebolavirus/genética , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Humanos , Laboratorios , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad , Sierra Leona/epidemiología
17.
Virology ; 496: 237-243, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27366976

RESUMEN

During the large outbreak of Ebola virus disease that occurred in Western Africa from late 2013 to early 2016, several hundred Ebola virus (EBOV) genomes have been sequenced and the virus genetic drift analyzed. In a previous report, we described an efficient reverse genetics system designed to generate recombinant EBOV based on a Makona variant isolate obtained in 2014. Using this system, we characterized the replication and fitness of 2 isolates of the Makona variant. These virus isolates are nearly identical at the genetic level, but have single amino acid differences in the VP30 and L proteins. The potential effects of these differences were tested using minigenomes and recombinant viruses. The results obtained with this approach are consistent with the role of VP30 and L as components of the EBOV RNA replication machinery. Moreover, the 2 isolates exhibited clear fitness differences in competitive growth assays.


Asunto(s)
Ebolavirus/fisiología , Aptitud Genética , Genoma Viral , Fiebre Hemorrágica Ebola/virología , Genética Inversa , Evolución Molecular , Orden Génico , Recombinación Genética
18.
J Infect Dis ; 213(5): 703-11, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26582961

RESUMEN

Animal models recapitulating human Ebola virus disease (EVD) are critical for insights into virus pathogenesis. Ebola virus (EBOV) isolates derived directly from human specimens do not, without adaptation, cause disease in immunocompetent adult rodents. Here, we describe EVD in mice engrafted with human immune cells (hu-BLT). hu-BLT mice developed EVD following wild-type EBOV infection. Infection with high-dose EBOV resulted in rapid, lethal EVD with high viral loads, alterations in key human antiviral immune cytokines and chemokines, and severe histopathologic findings similar to those shown in the limited human postmortem data available. A dose- and donor-dependent clinical course was observed in hu-BLT mice infected with lower doses of either Mayinga (1976) or Makona (2014) isolates derived from human EBOV cases. Engraftment of the human cellular immune system appeared to be essential for the observed virulence, as nonengrafted mice did not support productive EBOV replication or develop lethal disease. hu-BLT mice offer a unique model for investigating the human immune response in EVD and an alternative animal model for EVD pathogenesis studies and therapeutic screening.


Asunto(s)
Ebolavirus/fisiología , Regulación de la Expresión Génica/inmunología , Fiebre Hemorrágica Ebola/inmunología , Animales , Encéfalo/virología , Citocinas/genética , Citocinas/metabolismo , Fiebre Hemorrágica Ebola/orina , Fiebre Hemorrágica Ebola/virología , Humanos , Riñón/virología , Hígado/virología , Pulmón/virología , Masculino , Ratones , Ratones Transgénicos , ARN Viral/aislamiento & purificación , Bazo/virología , Testículo/virología , Replicación Viral
19.
IEEE Trans Pattern Anal Mach Intell ; 37(1): 67-79, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26353209

RESUMEN

We develop a framework for extracting a concise representation of the shape information available from diffuse shading in a small image patch. This produces a mid-level scene descriptor, comprised of local shape distributions that are inferred separately at every image patch across multiple scales. The framework is based on a quadratic representation of local shape that, in the absence of noise, has guarantees on recovering accurate local shape and lighting. And when noise is present, the inferred local shape distributions provide useful shape information without over-committing to any particular image explanation. These local shape distributions naturally encode the fact that some smooth diffuse regions are more informative than others, and they enable efficient and robust reconstruction of object-scale shape. Experimental results show that this approach to surface reconstruction compares well against the state-of-art on both synthetic images and captured photographs.

20.
Emerg Infect Dis ; 21(10): 1816-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26401603

RESUMEN

To determine the utility of oral swabs for diagnosing infection with Ebola virus, we used a guinea pig model and obtained daily antemortem and postmortem swab samples. According to quantitative reverse transcription PCR analysis, the diagnostic value was poor for antemortem swab samples but excellent for postmortem samples.


Asunto(s)
Diagnóstico Precoz , Ebolavirus , Fiebre Hemorrágica Ebola/diagnóstico , Boca/virología , Manejo de Especímenes/métodos , Animales , Cobayas , Fiebre Hemorrágica Ebola/virología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA