Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
MAbs ; 14(1): 2076775, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35593235

RESUMEN

Here, we report the molecular engineering of nanobodies that bind with picomolar affinity to both SARS-CoV-1 and SARS-CoV-2 receptor-binding domains (RBD) and are highly neutralizing. We applied deep mutational engineering to VHH72, a nanobody initially specific for SARS-CoV-1 RBD with little cross-reactivity to SARS-CoV-2 antigen. We first identified all the individual VHH substitutions that increase binding to SARS-CoV-2 RBD and then screened highly focused combinatorial libraries to isolate engineered nanobodies with improved properties. The corresponding VHH-Fc molecules show high affinities for SARS-CoV-2 antigens from various emerging variants and SARS-CoV-1, block the interaction between ACE2 and RBD, and neutralize the virus with high efficiency. Its rare specificity across sarbecovirus relies on its peculiar epitope outside the immunodominant regions. The engineered nanobodies share a common motif of three amino acids, which contribute to the broad specificity of recognition. Our results show that deep mutational engineering is a very powerful method, especially to rapidly adapt existing antibodies to new variants of pathogens.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Deriva y Cambio Antigénico , Humanos , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
2.
Cancers (Basel) ; 12(6)2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32512883

RESUMEN

Despite constant progress over the past three decades, multiple myeloma (MM) is still an incurable disease, and the identification of new biomarkers to better select patients and adapt therapy is more relevant than ever. Recently, the introduction of therapeutic monoclonal antibodies (mAbs) (including direct-targeting mAbs and immune checkpoint inhibitors) appears to have changed the paradigm of MM management, emphasizing the opportunity to cure MM patients through an immunotherapeutic approach. In this context, immuno-positron emission tomography (immunoPET), combining the high sensitivity and resolution of a PET camera with the specificity of a radiolabelled mAb, holds the capability to cement this new treatment paradigm for MM patients. It has the potential to non-invasively monitor the distribution of therapeutic antibodies or directly monitor biomarkers on MM cells, and to allow direct observation of potential changes over time and in response to various therapeutic interventions. Tumor response could, in the future, be anticipated more effectively to provide individualized treatment plans tailored to patients according to their unique imaging signatures. This work explores the important role played by immunotherapeutics in the management of MM, and focuses on some of the challenges for this drug class and the significant interest of companion imaging agents such as immunoPET.

3.
Methods Mol Biol ; 2070: 19-41, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31625088

RESUMEN

Engineered protein scaffolds have made a tremendous contribution to the panel of affinity tools owing to their favorable biophysical properties that make them useful for many applications. In 2007, our group paved the way for using archaeal Sul7d proteins for the design of artificial affinity ligands, so-called Affitins. For many years, Sac7d and Sso7d have been used as molecular basis to obtain binders for various targets. Recently, we characterized their old gifted protein family and identified Aho7c, originating from Acidianus hospitalis, as the shortest member (60 amino-acids) with impressive stability (96.5 °C, pH 0-12). Here, we describe the construction of Aho7c combinatorial libraries and their use for selection of binders by ribosome display.


Asunto(s)
Acidianus , Proteínas Arqueales , Ingeniería de Proteínas , Ribosomas , Acidianus/química , Acidianus/genética , Proteínas Arqueales/biosíntesis , Proteínas Arqueales/química , Proteínas Arqueales/genética , Ribosomas/química , Ribosomas/metabolismo
4.
Int J Mol Sci ; 20(10)2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31137758

RESUMEN

Although positron emission tomography (PET) imaging with 18-Fluorodeoxyglucose (18F-FDG) is a promising technique in multiple myeloma (MM), the development of other radiopharmaceuticals seems relevant. CD138 is currently used as a standard marker for the identification of myeloma cells and could be used in phenotype tumor imaging. In this study, we used an anti-CD138 murine antibody (9E7.4) radiolabeled with copper-64 (64Cu) or zirconium-89 (89Zr) and compared them in a syngeneic mouse model to select the optimal tracers for MM PET imaging. Then, 9E7.4 was conjugated to TE2A-benzyl isothiocyanate (TE2A) and desferrioxamine (DFO) chelators for 64Cu and 89Zr labeling, respectively. 64Cu-TE2A-9E7.4 and 89Zr-DFO-9E7.4 antibodies were evaluated by PET imaging and biodistribution studies in C57BL/KaLwRij mice bearing either 5T33-MM subcutaneous tumors or bone lesions and were compared to 18F-FDG-PET imaging. In biodistribution and PET studies, 64Cu-TE2A-9E7.4 and 89Zr-DFO-9E7.4 displayed comparable good tumor uptake of subcutaneous tumors. On the bone lesions, PET imaging with 64Cu-TE2A-9E7.4 and 89Zr-DFO-9E7.4 showed higher uptake than with 18F-FDG-PET. Comparison of both 9E7.4 conjugates revealed higher nonspecific bone uptakes of 89Zr-DFO-9E7.4 than 64Cu-TE2A-9E7.4. Because of free 89Zr's tropism for bone when using 89Zr-anti-CD138, 64Cu-anti-CD138 antibody had the most optimal tumor-to-nontarget tissue ratios for translation into humans as a specific new imaging radiopharmaceutical agent in MM.


Asunto(s)
Neoplasias Óseas/diagnóstico por imagen , Radioisótopos de Cobre/farmacocinética , Mieloma Múltiple/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radioisótopos/farmacocinética , Radiofármacos/farmacocinética , Sindecano-1/inmunología , Circonio/farmacocinética , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Neoplasias Óseas/secundario , Línea Celular , Línea Celular Tumoral , Radioisótopos de Cobre/efectos adversos , Radioisótopos de Cobre/química , Femenino , Fluorodesoxiglucosa F18/farmacocinética , Ratones , Ratones Endogámicos C57BL , Mieloma Múltiple/patología , Radioisótopos/efectos adversos , Radioisótopos/química , Radiofármacos/efectos adversos , Radiofármacos/química , Sindecano-1/química , Distribución Tisular , Circonio/efectos adversos , Circonio/química
5.
Oncotarget ; 9(10): 9061-9072, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29507674

RESUMEN

PURPOSE: Although recent data from the literature suggest that PET imaging with [18]-Fluorodeoxyglucose (18F-FDG) is a promising technique in multiple myeloma (MM), the development of other radiopharmaceuticals seems relevant. CD138 is currently used as a standard marker in many laboratories for the identification and purification of myeloma cells, and could be used in phenotype tumor imaging. In this study, we evaluated a 64Cu-labeled anti-CD138 murine antibody (64Cu-TE2A-9E7.4) and a metabolic tracer (64CuCl2) for PET imaging in a MM syngeneic mouse model. EXPERIMENTAL DESIGN AND RESULTS: 64Cu-TE2A-9E7.4 antibody and 64CuCl2 were evaluated via PET imaging and biodistribution studies in C57BL / KaLwRij mice bearing either 5T33-MM subcutaneous tumors or bone lesions. These results were compared to 18F-FDG-PET imaging. Autoradiography and histology of representative tumors were secondly conducted. In biodistribution and PET studies, 64Cu-TE2A-9E7.4 displayed good tumor uptake of subcutaneous and intra-medullary lesions, greater than that demonstrated with 18F-FDG-PET. In control experiments, only low-level, non-specific uptake of 64Cu-labeled isotype IgG was observed in tumors. Similarly, low activity concentrations of 64CuCl2 were accumulated in MM lesions. Histopathologic analysis of the immuno-PET-positive lesions revealed the presence of plasma cell infiltrates within the bone marrow. CONCLUSIONS: 64Cu-labeled anti-CD138 antibody can detect subcutaneous MM tumors and bone marrow lesions with high sensitivity, outperforming 18F-FDG-PET and 64CuCl2 in this preclinical model. These data support 64Cu-anti-CD138 antibody as a specific and promising new imaging radiopharmaceutical agent in MM.

6.
Melanoma Res ; 25(4): 279-83, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25968572

RESUMEN

We recently characterized two melanoma antigens MELOE-1 and MELOE-2 derived from a polycistronic RNA overexpressed in the melanocytic lineage. This transcription profile was because of hypomethylation of the meloe proximal promoter in melanomas and melanocytes. Here, we investigate whether this demethylation was restricted to the meloe promoter or was linked to a general lack of methylation at the meloe locus in the melanocytic lineage. We establish the methylation pattern of the locus spanning more than 40 kbp, focusing on CpG islands, using DNA bisulfite conversion and pyrosequencing. The study was carried out on cultured cell lines (melanoma, melanocyte, colon cancer, and mesothelioma cell lines), healthy tissues (skin and colon), and melanoma tumors. Demethylation, specifically observed in the melanocytic lineage, involves a large promoter area and not the entire meloe locus. This enables updating a tight regulation of meloe transcription in this lineage, suggesting tissue-specific epigenetic mechanisms. Associated with the previously described translational mechanisms, leading to the specific expression of MELOE-1 and MELOE-2 in melanomas, this makes MELOE-derived antigens a relevant candidate for immunotherapy of melanoma.


Asunto(s)
Antígenos de Neoplasias/genética , Metilación de ADN/genética , Antígenos Específicos del Melanoma/genética , Melanoma/genética , Proteínas de Neoplasias/genética , Secuencia de Bases , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia , Melanocitos/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Análisis de Secuencia de ADN , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA