Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ann Plast Surg ; 93(1): 100-106, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38785378

RESUMEN

BACKGROUND: Exposure to high doses of total body irradiation (TBI) may lead to the development of acute radiation syndrome (ARS). This study was conducted to establish an experimental rat model of TBI to assess the impact of different doses of TBI on survival and the kinetics of changes within the hematopoietic system in ARS. MATERIALS AND METHODS: In this study, 132 Lewis rats irradiated with a 5Gy or 7Gy dose served as experimental models to induce ARS and to evaluate the hematopoietic response of the bone marrow (BM) compartment. Animals were divided into 22 experimental groups (n = 6/group): groups 1-11 irradiated with 5Gy dose and groups 12-22 irradiated with 7Gy dose. The effects of TBI on the hematopoietic response were assessed at 2, 4, 6, 8 hours and 5, 10, 20, 30, 40, 60 and 90 days following TBI. Signs of ARS were evaluated by analyzing blood samples through complete blood count in addition to the clinical assessment. RESULTS: Groups irradiated with 5Gy TBI showed 100% survival, whereas after 7Gy dose, 1.6% mortality rate was observed. Assessment of the complete blood count revealed that lymphocytes were the first to be affected, regardless of the dose used, whereas an "abortive rise" of granulocytes was noted for both TBI doses. None of the animals exhibited signs of severe anemia or thrombocytopenia. All animals irradiated with 5Gy dose regained initial values for all blood cell subpopulations by the end of observation period. Body weight loss was reported to be dose-dependent and was more pronounced in the 7Gy groups. However, at the study end point at 90 days, all animals regained or exceeded the initial weight values. CONCLUSIONS: We have successfully established a rat experimental model of TBI. This study revealed a comparable hematopoietic response to the sublethal or potentially lethal doses of ionizing radiation. The experimental rat model of TBI may be used to assess different therapeutic approaches including BM-based cell therapies for long-term reconstitution of the hematopoietic and BM compartments allowing for comprehensive analysis of both the hematological and clinical symptoms associated with ARS.


Asunto(s)
Síndrome de Radiación Aguda , Ratas Endogámicas Lew , Irradiación Corporal Total , Animales , Ratas , Relación Dosis-Respuesta en la Radiación , Modelos Animales de Enfermedad , Masculino , Hematopoyesis/efectos de la radiación , Traumatismos Experimentales por Radiación , Médula Ósea/efectos de la radiación
2.
Artículo en Inglés | MEDLINE | ID: mdl-38782370

RESUMEN

Current therapies for acute radiation syndrome (ARS) involve bone marrow transplantation (BMT), leading to graft-versus-host disease (GvHD). To address this challenge, we have developed a novel donor-recipient chimeric cell (DRCC) therapy to increase survival and prevent GvHD following total body irradiation (TBI)-induced hematopoietic injury without the need for immunosuppression. In this study, 20 Lewis rats were exposed to 7 Gy TBI to induce ARS, and we assessed the efficacy of various cellular therapies following systemic intraosseous administration. Twenty Lewis rats were randomly divided into four experimental groups (n = 5/group): saline control, allogeneic bone marrow transplantation (alloBMT), DRCC, and alloBMT + DRCC. DRCC were created by polyethylene glycol-mediated fusion of bone marrow cells from 24 ACI (RT1a) and 24 Lewis (RT11) rat donors. Fusion feasibility was confirmed by flow cytometry and confocal microscopy. The impact of different therapies on post-irradiation peripheral blood cell recovery was evaluated through complete blood count, while GvHD signs were monitored clinically and histopathologically. The chimeric state of DRCC was confirmed. Post-alloBMT mortality was 60%, whereas DRCC and alloBMT + DRCC therapies achieved 100% survival. DRCC therapy also led to the highest white blood cell counts and minimal GvHD changes in kidney and skin samples, in contrast to alloBMT treatment. In this study, transplantation of DRCC promoted the recovery of peripheral blood cell populations after TBI without the development of GVHD. This study introduces a novel and promising DRCC-based bridging therapy for treating ARS and extending survival without GvHD.


Asunto(s)
Síndrome de Radiación Aguda , Trasplante de Médula Ósea , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped , Ratas Endogámicas Lew , Irradiación Corporal Total , Animales , Ratas , Enfermedad Injerto contra Huésped/terapia , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Médula Ósea/métodos , Síndrome de Radiación Aguda/terapia , Quimera por Trasplante , Masculino , Trasplante Homólogo , Humanos , Células Sanguíneas
3.
Biomolecules ; 14(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38785982

RESUMEN

Chimerism-based strategies represent a pioneering concept which has led to groundbreaking advancements in regenerative medicine and transplantation. This new approach offers therapeutic potential for the treatment of various diseases, including inherited disorders. The ongoing studies on chimeric cells prompted the development of Dystrophin-Expressing Chimeric (DEC) cells which were introduced as a potential therapy for Duchenne Muscular Dystrophy (DMD). DMD is a genetic condition that leads to premature death in adolescent boys and remains incurable with current methods. DEC therapy, created via the fusion of human myoblasts derived from normal and DMD-affected donors, has proven to be safe and efficacious when tested in experimental models of DMD after systemic-intraosseous administration. These studies confirmed increased dystrophin expression, which correlated with functional and morphological improvements in DMD-affected muscles, including cardiac, respiratory, and skeletal muscles. Furthermore, the application of DEC therapy in a clinical study confirmed its long-term safety and efficacy in DMD patients. This review summarizes the development of chimeric cell technology tested in preclinical models and clinical studies, highlighting the potential of DEC therapy in muscle regeneration and repair, and introduces chimeric cell-based therapies as a promising, novel approach for muscle regeneration and the treatment of DMD and other neuromuscular disorders.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Distrofina , Músculo Esquelético , Distrofia Muscular de Duchenne , Regeneración , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/genética , Humanos , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Distrofina/genética , Distrofina/metabolismo , Mioblastos/metabolismo
4.
Biomedicines ; 12(5)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791026

RESUMEN

Cell-based therapies hold promise for novel therapeutic strategies in regenerative medicine. We previously characterized in vitro human umbilical di-chimeric cells (HUDCs) created via the ex vivo fusion of human umbilical cord blood (UCB) cells derived from two unrelated donors. In this in vivo study, we assessed HUDC safety and biodistribution in the NOD SCID mouse model at 90 days following the systemic intraosseous administration of HUDCs. Twelve NOD SCID mice (n = 6/group) received intraosseous injection of donor UCB cells (3.0 × 106) in Group 1, or HUDCs (3.0 × 106) in Group 2, without immunosuppression. Flow cytometry assessed hematopoietic cell surface markers in peripheral blood and the presence of HLA-ABC class I antigens in lymphoid and non-lymphoid organs. HUDC safety was assessed by weekly evaluations, magnetic resonance imaging (MRI), and at autopsy for tumorigenicity. At 90 days after intraosseous cell administration, the comparable expression of HLA-ABC class I antigens in selected organs was found in UCB control and HUDC therapy groups. MRI and autopsy confirmed safety by no signs of tumor growth. This study confirmed HUDC biodistribution to selected lymphoid organs following intraosseous administration, without immunosuppression. These data introduce HUDCs as a novel promising approach for immunomodulation in transplantation.

5.
Stem Cells Dev ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38753703

RESUMEN

In recent years, cell-based therapies have emerged as a promising approach for mitigating radiation-induced injury. Acute radiation syndrome (ARS) results from exposure to high doses of radiation over a short time period. This study aimed to compare the efficacy of donor-recipient chimeric cell (DRCC) therapy in mitigating ARS induced by a total body irradiation (TBI) dose of 10 gray (Gy). Thirty irradiated Lewis rats were employed as ARS models to assess the efficacy of systemic-intraosseous transplantation of different cellular therapies in five experimental groups (n = 6/group): saline control, isogenic bone marrow transplantation (isoBMT), allogeneic BMT (alloBMT), DRCC, and alloBMT+DRCC. DRCC were created by polyethylene glycol-mediated fusion of bone marrow cells from 24 ACI (RT1a) and 24 Lewis (RT11) rat donors. The creation of DRCC and chimeric state was confirmed by flow cytometry (FC) and confocal microscopy (CM). Recovery of blood parameters was evaluated through complete blood count analysis. Graft-versus-host disease (GvHD) signs were assessed clinically and histopathologically using kidney, skin, and small intestine biopsies. FC and CM confirmed the fusion feasibility and the chimeric state of DRCC. A 100% mortality rate was observed in the saline control group, whereas a 100% survival was recorded following DRCC transplantation, correlating with significant recovery of peripheral blood parameters. In addition, no clinical or histopathological signs of GvHD were observed after DRCC and alloBMT+DRCC transplantation. These findings confirm efficacy of DRCC in mitigating GvHD, promoting hematopoietic recovery, and increasing animal survival following TBI-induced ARS. Moreover, tolerogenic and immunomodulatory properties of DRCC therapy support its feasibility for clinical applications. Therefore, this study introduces DRCC as an innovative bridging therapy for alleviating the acute effects of TBI, with broad implications for stem cell research and regenerative medicine.

6.
Stem Cells Dev ; 33(9-10): 214-227, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38445374

RESUMEN

Cellular therapies provide promising options for inducing tolerance in transplantation of solid organs, bone marrow, and vascularized composite allografts. However, novel tolerance-inducing protocols remain limited, despite extensive research. We previously introduced and characterized a human multi-chimeric cell (HMCC) line, created through ex vivo fusion of human umbilical cord blood (UCB) cells derived from three unrelated donors. In this study, we assessed in vivo biodistribution and safety of HMCCs in the NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ NOD scid gamma (NSG) mouse model. Twenty-four NSG mice were randomly assigned to four groups (n = 6/group) and received intraosseous (IO.) or intravenous (IV.) injections of 0.6 × 106 donor UCB cells or fused HMCC: Group 1-UCB (IO.), Group 2-UCB (IV.), Group 3-HMCC (IO.), and Group 4-HMCC (IV.). Hematopoietic phenotype maintenance and presence of human leukocyte antigens (HLA), class I antigens, in the selected lymphoid and nonlymphoid organs were assessed by flow cytometry. Weekly evaluation and magnetic resonance imaging (MRI) assessed HMCC safety. Comparative analysis of delivery routes revealed significant differences in HLA class I percentages for IO.: 1.83% ± 0.79%, versus IV. delivery: 0.04% ± 0.01%, P < 0.01, and hematopoietic stem cell marker percentages of CD3 (IO.: 1.41% ± 0.04%, vs. IV.: 0.07% ± 0.01%, P < 0.05) and CD4 (IO.: 2.74% ± 0.31%, vs. IV.: 0.59% ± 0.11%, P < 0.01). Biodistribution analysis after IO. delivery confirmed HMCC presence in lymphoid organs and negligible presence in nonlymphoid organs, except for lung (IO.: 0.19% ± 0.06%, vs. IV.: 6.33% ± 0.56%, P < 0.0001). No evidence of tumorigenesis was observed by MRI at 90 days following IO. and IV. administration of HMCC. This study confirmed biodistribution and safety of HMCC therapy in the NSG mouse model, both following IO. and IV. administration. However, IO. delivery route confirmed higher efficacy of engraftment and safety profile, introducing HMCCs as a novel cell-based therapeutic approach with promising clinical applications in solid organ, bone marrow, and vascularized composite allotransplantation transplantation.


Asunto(s)
Ratones Endogámicos NOD , Ratones SCID , Animales , Humanos , Ratones , Distribución Tisular , Administración Intravenosa , Sangre Fetal/citología , Infusiones Intraóseas/métodos
7.
Stem Cell Investig ; 10: 16, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614644

RESUMEN

Background: Cell-based therapies are promising for tolerance induction in bone marrow (BM), solid organs, and vascularized composite allotransplantation (VCA). The toxicity of bone marrow transplantation (BMT) protocols precludes this approach from routine clinical applications. To address this problem, we developed a new therapy of Human Umbilical Di-Chimeric (HUDC) cells for tolerance induction in transplantation. This study established in vitro characterization of the created HUDC cells. Methods: We performed sixteen ex vivo polyethylene glycol (PEG)-mediated fusions of human umbilical cord blood (UCB) cells from two unrelated donors. Fusion feasibility was confirmed in vitro by flow cytometry (FC) and confocal microscopy (CM). The HUDC cells' genotype was assessed by lymphocytotoxicity test and short tandem repeat-polymerase chain reaction (STR-PCR) analysis, phenotype by FC, viability by LIVE/DEAD® assay, and apoptosis level by Annexin V staining. We used COMET assay to assess HUDC cells' genotoxicity after the fusion procedure. Clonogenic properties of HUDC cells were evaluated by colony forming unit (CFU) assay. Mixed lymphocyte reaction (MLR) assay assessed immunogenic and tolerogenic properties of HUDC cells. Results: We confirmed the creation of HUDC cells from two unrelated human donors of UCB cells by FC and CM. Human leukocyte antigen (HLA) class I and II typing, and STR-PCR analysis of HUDC cells confirmed the presence of alleles and loci from both unrelated UCB donors (donor chimerism: 49%±8.3%, n=4). FC confirmed the hematopoietic phenotype of HUDC cells. We confirmed high HUDC cells' viability (0.47% of dead cells) and a low apoptosis level of fused HUDC cells (15.9%) compared to positive control of PKH-stained UCB cells (20.4%) before fusion. COMET assay of HUDC cells revealed a lack of DNA damage. CFU assay confirmed clonogenic properties of HUDC cells, and MLR assay revealed a low immunogenicity of HUDC cells. Conclusions: This study confirmed creation of a novel HUDC cell line by ex vivo PEG-mediated fusion of UCB cells from two unrelated donors. The unique concept of creating a HUDC cell line, representing the genotype and phenotype of both, transplant donor and the recipient, introduces a promising approach for tolerance induction in BM, solid organs, and VCA transplantation.

8.
Stem Cell Rev Rep ; 19(8): 2741-2755, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37603137

RESUMEN

Cellular therapies are regarded as the most promising approach for inducing transplant tolerance without life-long immunosuppression in solid organ and vascularized composite allotransplantation (VCA). Currently, no therapies are achieving this goal. This study introduces a novel Human Multi-Chimeric Cell (HMCC) line created by fusion of umbilical cord blood (UCB) cells, from three unrelated donors as an alternative therapeutic approach to bone marrow transplantation and tolerance induction in solid organ and VCA transplants. We performed eighteen ex vivo polyethylene glycol mediated fusions of human UCB cells from three unrelated donors to create HMCC. Mononuclear cells labeled with PKH26, PKH67, and eFluor™ 670 fluorescent dyes were fused and sorted creating a new population of triple-labeled (PKH26/PKH67/eFluor™ 670) HMCC. The creation of HMCC from three unrelated human UCB donors was confirmed by flow cytometry and confocal microscopy. Genotyping analyses determined the tri-chimeric state of HMCC by presence of parent alleles and selected loci specific for each of three UCB donors. Phenotype characterization confirmed hematopoietic markers distribution, comparable to UCB donors. HMCC maintained viability and displayed a low apoptosis level. The COMET assay revealed absence of genotoxicity, confirming fusion safety. Colony forming units assay showed clonogenic properties of HMCC. This study confirmed the feasibility of HMCC creation from three unrelated human UCB donors and characterized tri-chimeric state, hematopoietic phenotype, viability, safety, and clonogenic properties of HMCC. The created HMCC line, representing genotype characteristics of three unrelated human UCB donors, introduces a novel therapeutic approach for bone marrow, solid organ, and VCA transplants.


Asunto(s)
Trasplante de Médula Ósea , Donantes de Tejidos , Humanos , Tolerancia Inmunológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA