Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Cancer Res ; 25(23): 7162-7174, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527169

RESUMEN

PURPOSE: Napabucasin (2-acetylfuro-1,4-naphthoquinone or BBI-608) is a small molecule currently being clinically evaluated in various cancer types. It has mostly been recognized for its ability to inhibit STAT3 signaling. However, based on its chemical structure, we hypothesized that napabucasin is a substrate for intracellular oxidoreductases and therefore may exert its anticancer effect through redox cycling, resulting in reactive oxygen species (ROS) production and cell death. EXPERIMENTAL DESIGN: Binding of napabucasin to NAD(P)H:quinone oxidoreductase-1 (NQO1), and other oxidoreductases, was measured. Pancreatic cancer cell lines were treated with napabucasin, and cell survival, ROS generation, DNA damage, transcriptomic changes, and alterations in STAT3 activation were assayed in vitro and in vivo. Genetic knockout or pharmacologic inhibition with dicoumarol was used to evaluate the dependency on NQO1. RESULTS: Napabucasin was found to bind with high affinity to NQO1 and to a lesser degree to cytochrome P450 oxidoreductase (POR). Treatment resulted in marked induction of ROS and DNA damage with an NQO1- and ROS-dependent decrease in STAT3 phosphorylation. Differential cytotoxic effects were observed, where NQO1-expressing cells generating cytotoxic levels of ROS at low napabucasin concentrations were more sensitive. Cells with low or no baseline NQO1 expression also produced ROS in response to napabucasin, albeit to a lesser extent, through the one-electron reductase POR. CONCLUSIONS: Napabucasin is bioactivated by NQO1, and to a lesser degree by POR, resulting in futile redox cycling and ROS generation. The increased ROS levels result in DNA damage and multiple intracellular changes, one of which is a reduction in STAT3 phosphorylation.


Asunto(s)
Apoptosis , Benzofuranos/farmacología , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Naftoquinonas/farmacología , Neoplasias Pancreáticas/patología , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Proliferación Celular , Daño del ADN , Humanos , Oxidación-Reducción , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Factor de Transcripción STAT3/metabolismo , Células Tumorales Cultivadas
2.
Mol Cancer Res ; 17(7): 1429-1434, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31043490

RESUMEN

Napabucasin is an NAD(P)H:quinone oxidoreductase 1 (NQO1)-bioactivatable small molecule hypothesized to affect multiple oncogenic pathways. In a prespecified, retrospective analysis of the napabucasin phase III CO.23 study, overall survival was longer for napabucasin versus placebo in patients expressing phosphorylated STAT3 (pSTAT3) in tumor cells and cells of the tumor microenvironment (TME). We hypothesized that a connection may exist between NQO1 expression in cancer cells and pSTAT3 in tumor cells and the TME. In 3D spheroid cocultures of cancer cells and cancer-associated fibroblasts, the antitumor activity of napabucasin was NQO1 dependent. The levels of cytokines such as IL6, CXCL10, and GM-CSF were higher in NQO1-positive versus NQO1-deleted cocultures. These differentially secreted cytokines promoted STAT3 phosphorylation in tumor cells and the TME. NQO1-expressing, napabucasin-sensitive tumor cells can modify tumor cells and the TME to promote STAT3 phosphorylation, suggesting that pSTAT3 may be used to identify a subpopulation of patients who would likely respond to napabucasin. IMPLICATIONS: pSTAT3 is a potential biomarker for patient response to the anticancer drug napabucasin.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/7/1429/F1.large.jpg.


Asunto(s)
Benzofuranos/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias Hipofaríngeas/tratamiento farmacológico , NAD(P)H Deshidrogenasa (Quinona)/genética , Naftoquinonas/farmacología , Factor de Transcripción STAT3/genética , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Linaje de la Célula/efectos de los fármacos , Técnicas de Cocultivo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/patología , Microambiente Tumoral/efectos de los fármacos
3.
Proc Natl Acad Sci U S A ; 114(47): 12524-12529, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109278

RESUMEN

During DNA replication, chromatin is disrupted ahead of the replication fork, and epigenetic information must be restored behind the fork. How epigenetic marks are inherited through DNA replication remains poorly understood. Histone H3 lysine 9 (H3K9) methylation and histone hypoacetylation are conserved hallmarks of heterochromatin. We previously showed that the inheritance of H3K9 methylation during DNA replication depends on the catalytic subunit of DNA polymerase epsilon, Cdc20. Here we show that the histone-fold subunit of Pol epsilon, Dpb4, interacts an uncharacterized small histone-fold protein, SPCC16C4.22, to form a heterodimer in fission yeast. We demonstrate that SPCC16C4.22 is nonessential for viability and corresponds to the true ortholog of Dpb3. We further show that the Dpb3-Dpb4 dimer associates with histone deacetylases, chromatin remodelers, and histones and plays a crucial role in the inheritance of histone hypoacetylation in heterochromatin. We solve the 1.9-Å crystal structure of Dpb3-Dpb4 and reveal that they form the H2A-H2B-like dimer. Disruption of Dpb3-Dpb4 dimerization results in loss of heterochromatin silencing. Our findings reveal a link between histone deacetylation and H3K9 methylation and suggest a mechanism for how two processes are coordinated during replication. We propose that the Dpb3-Dpb4 heterodimer together with Cdc20 serves as a platform for the recruitment of chromatin modifiers and remodelers that mediate heterochromatin assembly during DNA replication, and ensure the faithful inheritance of epigenetic marks in heterochromatin.


Asunto(s)
Proteínas Cdc20/química , ADN Polimerasa II/química , Epigénesis Genética , Heterocromatina/química , Histonas/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/genética , Animales , Sitios de Unión , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Clonación Molecular , Cristalografía por Rayos X , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Replicación del ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
4.
Cell Rep ; 19(12): 2477-2489, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636937

RESUMEN

RNAi factors and their catalytic activities are essential for heterochromatin assembly in S. pombe. This has led to the idea that siRNAs can promote H3K9 methylation by recruiting the cryptic loci regulator complex (CLRC), also known as recombination in K complex (RIKC), to the nucleation site. The conserved RNA-binding protein Rct1 (AtCyp59/SIG-7) interacts with splicing factors and RNA polymerase II. Here we show that Rct1 promotes processing of pericentromeric transcripts into siRNAs via the RNA recognition motif. Surprisingly, loss of siRNA in rct1 mutants has no effect on H3K9 di- or tri-methylation, resembling other splicing mutants, suggesting that post-transcriptional gene silencing per se is not required to maintain heterochromatin. Splicing of the Argonaute gene is also defective in rct1 mutants and contributes to loss of silencing but not to loss of siRNA. Our results suggest that Rct1 guides transcripts to the RNAi machinery by promoting splicing of elongating non-coding transcripts.


Asunto(s)
Ciclofilinas/fisiología , Heterocromatina/genética , ARN de Hongos/genética , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/genética , Ensamble y Desensamble de Cromatina , Ciclofilinas/química , Exosomas/metabolismo , Regulación Fúngica de la Expresión Génica , Heterocromatina/metabolismo , Histonas/metabolismo , Metilación , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Interferencia de ARN , ARN Polimerasa II/metabolismo , Empalme del ARN , ARN de Hongos/biosíntesis , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química
5.
Cell ; 159(3): 572-83, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25417108

RESUMEN

Nuclear RNAi is an important regulator of transcription and epigenetic modification, but the underlying mechanisms remain elusive. Using a genome-wide approach in the fission yeast S. pombe, we have found that Dcr1, but not other components of the canonical RNAi pathway, promotes the release of Pol II from the 3? end of highly transcribed genes, and, surprisingly, from antisense transcription of rRNA and tRNA genes, which are normally transcribed by Pol I and Pol III. These Dcr1-terminated loci correspond to sites of replication stress and DNA damage, likely resulting from transcription-replication collisions. At the rDNA loci, release of Pol II facilitates DNA replication and prevents homologous recombination, which would otherwise lead to loss of rDNA repeats especially during meiosis. Our results reveal a novel role for Dcr1-mediated transcription termination in genome maintenance and may account for widespread regulation of genome stability by nuclear RNAi in higher eukaryotes.


Asunto(s)
Replicación del ADN , Endorribonucleasas/metabolismo , Inestabilidad Genómica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Terminación de la Transcripción Genética , ADN sin Sentido/genética , ADN sin Sentido/metabolismo , Interferencia de ARN , ARN Polimerasa II/metabolismo , Schizosaccharomyces/enzimología , Transcripción Genética
6.
Eur J Immunol ; 42(8): 2165-75, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22865050

RESUMEN

Paxillin is an adaptor protein associated with focal adhesion complex, and is activated by tyrosine phosphorylation through focal adhesion kinase (FAK) and Src kinase. Recent studies reveal that serine phosphorylation of paxillin by JNK and p38 MAPK is essential for cell migration or neurite extension, but their cellular targets remain unclear. In this study, we examined the requirement of paxillin phosphorylation by p38 MAPK or JNK in T-cell motility and activation using paxillin mutants at the respective phosphorylation sites, Ser85, and Ser178. (S85A)-paxillin, (S178A)-paxillin, or (S85A/S178A)-paxillin inhibited the motility of NIH/3T3 fibroblasts, but did not interfere with T-cell migration and integrin-mediated T-cell adhesion. In contrast, activation of T cells was effectively suppressed by (S85A/S178A)-paxillin. Transgenic (S85A/S178A)-paxillin expression inhibited T-cell proliferation and reduced the production of IL-2, IFN-γ, and IL-4. In searching for signals modulated by (S85A/S178A)-paxillin, we found that NFAT activation was specifically blocked by (S85A/S178A)-paxillin. This could be partly attributed to diminished stromal interaction molecule 1 (STIM1) expression and attenuated TCR-induced Ca(2+) influx. Our results demonstrate that dual phosphorylation of paxillin by JNK and p38 MAPK is essential for T-cell activation and suggest that NFAT is a functional target of the JNK/p38 phosphorylated paxillin.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Factores de Transcripción NFATC/metabolismo , Paxillin/metabolismo , Linfocitos T/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Células 3T3 , Animales , Canales de Calcio , Adhesión Celular/inmunología , Línea Celular , Quimiotaxis de Leucocito , Integrinas/metabolismo , Interferón gamma/biosíntesis , Interleucina-2/biosíntesis , Interleucina-4/biosíntesis , Activación de Linfocitos , Glicoproteínas de Membrana/biosíntesis , Ratones , Factores de Transcripción NFATC/biosíntesis , Paxillin/genética , Fosforilación , Molécula de Interacción Estromal 1 , Linfocitos T/fisiología
7.
Nature ; 479(7371): 135-8, 2011 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-22002604

RESUMEN

Heterochromatin comprises tightly compacted repetitive regions of eukaryotic chromosomes. The inheritance of heterochromatin through mitosis requires RNA interference (RNAi), which guides histone modification during the DNA replication phase of the cell cycle. Here we show that the alternating arrangement of origins of replication and non-coding RNA in pericentromeric heterochromatin results in competition between transcription and replication in Schizosaccharomyces pombe. Co-transcriptional RNAi releases RNA polymerase II (Pol II), allowing completion of DNA replication by the leading strand DNA polymerase, and associated histone modifying enzymes that spread heterochromatin with the replication fork. In the absence of RNAi, stalled forks are repaired by homologous recombination without histone modification.


Asunto(s)
Replicación del ADN/fisiología , Silenciador del Gen , Heterocromatina/genética , Heterocromatina/metabolismo , Interferencia de ARN , ARN Polimerasa II/metabolismo , Schizosaccharomyces/genética , Centrómero/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Histonas/metabolismo , Recombinación Homóloga , Modelos Genéticos , Datos de Secuencia Molecular , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Origen de Réplica , Fase S , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA