RESUMEN
Despite decades of preclinical investigation, there remains limited understanding of the etiology and biological underpinnings of anxiety disorders. Sensitivity to potential threat is characteristic of anxiety-like behavior in humans and rodents, but traditional rodent behavioral tasks aimed to assess threat responsiveness lack translational value, especially with regard to emotionally valenced stimuli. Therefore, development of novel preclinical approaches to serve as analogues to patient assessments is needed. In humans, the fearful face task is widely used to test responsiveness to socially communicated threat signals. In rats, ultrasonic vocalizations (USVs) are analogous social cues associated with positive or negative affective states that can elicit behavioral changes in the receiver. It is therefore likely that when rats hear aversive alarm call USVs (22â kHz), they evoke translatable changes in brain activity comparable with the fearful face task. We used functional magnetic resonance imaging in male and female rats to assess changes in BOLD activity induced by exposure to aversive 22â kHz alarm calls emitted in response to threatening stimuli, prosocial (55â kHz) USVs emitted in response to appetitive stimuli, or a computer-generated 22â kHz tone. Results show patterns of regional activation that are specific to each USV stimulus. Notably, limbic regions clinically relevant to psychiatric disorders (e.g., amygdala, bed nucleus of the stria terminalis) are preferentially activated by either aversive 22â kHz or appetitive 55â kHz USVs. These results support the use of USV playback as a promising translational tool to investigate affective processing under conditions of distal threat in preclinical rat models.
Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Vocalización Animal , Animales , Vocalización Animal/fisiología , Masculino , Femenino , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Ratas , Ratas Sprague-Dawley , Miedo/fisiologíaRESUMEN
LSD is a hallucinogen with complex neurobiological and behavioral effects. Underlying these effects are changes in brain neuroplasticity. This is the first study to follow the developmental changes in brain structure and function following LSD exposure in periadolescence. We hypothesized LSD given during a time of heightened neuroplasticity, particularly in the forebrain, would affect cognitive and emotional behavior and the associated underlying neuroanatomy and neurocircuitry. Female and male mice were given vehicle, single or multiple treatments of 3.3 µg of LSD by oral gavage starting on postnatal day 51. Between postnatal days 90-120 mice were imaged and tested for cognitive and motor behavior. MRI data from voxel-based morphometry, diffusion weighted imaging, and BOLD resting state functional connectivity were registered to a mouse 3D MRI atlas with 139 brain regions providing site-specific differences in global brain structure and functional connectivity between experimental groups. Motor behavior and cognitive performance were unaffected by periadolescent exposure to LSD. Differences across experimental groups in brain volume for any of the 139 brain areas were few in number and not focused on any specific brain region. Multiple exposures to LSD significantly altered gray matter microarchitecture across much of the brain. These changes were primary associated with the thalamus, sensory and motor cortices, and basal ganglia. The forebrain olfactory system and prefrontal cortex and hindbrain cerebellum and brainstem were unaffected. The functional connectivity between forebrain white matter tracts and sensorimotor cortices and hippocampus was reduced with multidose LSD exposure. Does exposure to LSD in late adolescence have lasting effects on brain development? The bulk of our significant findings were seen through changes is DWI values across 74 brain areas in the multi-dose LSD group. The pronounced changes in indices of anisotropy across much of the brain would suggest altered gray matter microarchitecture and neuroplasticity. There was no evidence of LSD having consequential effects on cognitive or motor behavior when animal were evaluated as young adults 90-120 days of age. Neither were there any differences in the volume of specific brain areas between experimental conditions. The reduction in connectivity in forebrain white matter tracts with multidose LSD and consolidation around sensorimotor and hippocampal brain areas requires a battery of tests to understand the consequences of these changes on behavior.
Asunto(s)
Encéfalo , Dietilamida del Ácido Lisérgico , Animales , Masculino , Femenino , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/diagnóstico por imagen , Ratones , Dietilamida del Ácido Lisérgico/farmacología , Dietilamida del Ácido Lisérgico/administración & dosificación , Alucinógenos/administración & dosificación , Alucinógenos/farmacología , Cognición/efectos de los fármacos , Imagen por Resonancia Magnética , Plasticidad Neuronal/efectos de los fármacos , Administración Oral , Actividad Motora/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Sustancia Gris/efectos de los fármacos , Sustancia Gris/crecimiento & desarrollo , Sustancia Gris/diagnóstico por imagenRESUMEN
Lysergic acid diethylamide is a hallucinogen with complex neurobiological and behavioural effects. This is the first study to use MRI to follow functional changes in brain activity in response to different doses of lysergic acid diethylamide in fully awake, drug-naive rats. We hypothesized that lysergic acid diethylamide would show a dose-dependent increase in activity in the prefrontal cortex and thalamus while decreasing hippocampal activity. Female and male rats were given intraperitoneal injections of vehicle or lysergic acid diethylamide in doses of 10 or 100â µg/kg while fully awake during the imaging session. Changes in blood oxygen level-dependent signal were recorded over a 30-min window. Approximately 45-min post-injection data for resting-state functional connectivity were collected. All data were registered to rat 3D MRI atlas with 173 brain regions providing site-specific increases and decreases in global brain activity and changes in functional connectivity. Treatment with lysergic acid diethylamide resulted in a significant dose-dependent increase in negative blood oxygen level-dependent signal. The areas most affected were the primary olfactory system, prefrontal cortex, thalamus and hippocampus. This was observed in both the number of voxels affected in these brains regions and the changes in blood oxygen level-dependent signal over time. However, there was a significant increase in functional connectivity between the thalamus and somatosensory cortex and the cerebellar nuclei and the surrounding brainstem areas. Contrary to our hypothesis, there was an acute dose-dependent increase in negative blood oxygen level-dependent signal that can be interpreted as a decrease in brain activity, a finding that agrees with much of the behavioural data from preclinical studies. The enhanced connectivity between thalamus and sensorimotor cortices is consistent with the human literature looking at lysergic acid diethylamide treatments in healthy human volunteers. The unexpected finding that lysergic acid diethylamide enhances connectivity to the cerebellar nuclei raises an interesting question concerning the role of this brain region in the psychotomimetic effects of hallucinogens.
RESUMEN
Background: Alpha 7 nicotinic acetylcholine receptor (α7nAChR) agonists have been developed to treat schizophrenia but failed in clinical trials due to rapid desensitization. GAT107, a type 2 allosteric agonist-positive allosteric modulator (ago-PAM) to the α7 nAChR was designed to activate the α7 nAChR while reducing desensitization. We hypothesized GAT107 would alter the activity of thalamocortical neural circuitry associated with cognition, emotion, and sensory perception. Methods: The present study used pharmacological magnetic resonance imaging (phMRI) to evaluate the dose-dependent effect of GAT107 on brain activity in awake male rats. Rats were given a vehicle or one of three different doses of GAT107 (1, 3, and 10 mg/kg) during a 35 min scanning session. Changes in BOLD signal and resting state functional connectivity were evaluated and analyzed using a rat 3D MRI atlas with 173 brain areas. Results: GAT107 presented with an inverted-U dose response curve with the 3 mg/kg dose having the greatest effect on the positive BOLD volume of activation. The primary somatosensory cortex, prefrontal cortex, thalamus, and basal ganglia, particularly areas with efferent connections from the midbrain dopaminergic system were activated as compared to vehicle. The hippocampus, hypothalamus, amygdala, brainstem, and cerebellum showed little activation. Forty-five min post treatment with GAT107, data for resting state functional connectivity were acquired and showed a global decrease in connectivity as compared to vehicle. Discussion: GAT107 activated specific brain regions involved in cognitive control, motivation, and sensory perception using a BOLD provocation imaging protocol. However, when analyzed for resting state functional connectivity there was an inexplicable, general decrease in connectivity across all brain areas.
RESUMEN
There is substantial evidence linking the prefrontal cortex (PFC) to a variety of cognitive abilities, with adolescence being a critical period in its development. In the current study, we investigated the neural basis of differences in learning in pre-adolescent common marmosets. At 8 months old, marmosets were given anatomical and resting state MRI scans (n = 24). At 9 months old, association learning and inhibitory control was tested using a 'go/no go' visual discrimination (VD) task. Marmosets were grouped into 'learners' (n = 12) and "non-learners" (n = 12), and associations between cognitive performance and sub-regional PFC volumes, as well as PFC connectivity patterns, were investigated. "Learners" had significantly (p < 0.05) larger volumes of areas 11, 25, 47 and 32 than 'non-learners', although 'non-learners' had significantly larger volumes of areas 24a and 8 v than "learners". There was also a significant correlation between average % correct responses to the 'punished' stimulus and volume of area 47. Further, 'non-learners' had significantly greater global PFC connections, as well as significantly greater numbers of connections between the PFC and basal ganglia, cerebellum and hippocampus, compared to 'learners'. These results suggest that larger sub-regions of the orbitofrontal cortex and ventromedial PFC, as well more refined PFC connectivity patterns to other brain regions associated with learning, may be important in successful response inhibition. This study therefore offers new information on the neurodevelopment of individual differences in cognition during pre-adolescence in non-human primates.
Asunto(s)
Callithrix , Corteza Prefrontal , Animales , Encéfalo , Aprendizaje , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología , Corteza Prefrontal/diagnóstico por imagenRESUMEN
Alcoholic liver disease (ALD), due to the multifactorial damage associated with alcohol (ethanol) consumption and metabolism, is one of the most prevalent liver diseases in the United States. The liver is the primary site of ethanol metabolism and is subsequently injured due to the production of reactive oxygen species (ROS), acetaldehyde, and metabolic stress. Building evidence suggests that dihydromyricetin (DHM), a bioactive flavonoid isolated from Hovenia dulcis, provides hepatoprotection by enhancing ethanol metabolism in the liver by maintaining hepatocellular bioenergetics, reductions of oxidative stress, and activating lipid oxidation pathways. The present study investigates the utility of DHM on hepatic mitochondrial biogenesis via activation of the AMP-activated protein kinase (AMPK)/Sirtuin (Sirt)-1/PPARG coactivator 1 (PGC)-1α signaling pathway. We utilized a forced drinking ad libitum study that chronically fed 30% ethanol to male C57BL/6J mice over 8 weeks and induced ALD pathology. We found that chronic ethanol feeding resulted in the suppression of AMPK activation and cytoplasmic Sirt-1 and mitochondrial Sirt-3 expression, effects that were reversed with daily DHM administration (5 mg/kg; intraperitoneally [i.p.]). Chronic ethanol feeding also resulted in hepatic hyperacetylation of PGC-1α, which was improved with DHM administration and its mediated increase of Sirt-1 activity. Furthermore, ethanol-fed mice were found to have increased expression of mitochondrial transcription factor A (TFAM), reduced mitochondrial content as assessed by mitochondrial DNA to nuclear DNA ratios, and significantly lower levels of hepatic ATP. In contrast, DHM administration significantly increased TFAM expression, hepatic ATP concentrations, and induced mitochondrial expression of respiratory complex III and V. In total, this work demonstrates a novel mechanism of DHM that improves hepatic bioenergetics, metabolic signaling, and mitochondrial viability, thus adding to the evidence supporting the use of DHM for treatment of ALD and other metabolic disorders.