Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 7: 818, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27379118

RESUMEN

Soluble sugars play an important role in freezing tolerance in both herbaceous and woody plants, functioning in both the reduction of freezing-induced dehydration and the cryoprotection of cellular constituents. The quantification of soluble sugars in plant tissues is, therefore, essential in understanding freezing tolerance. While a number of analytical techniques and methods have been used to quantify sugars, most of these are expensive and time-consuming due to complex sample preparation procedures which require the derivatization of the carbohydrates being analyzed. Analysis of soluble sugars using capillary zone electrophoresis (CZE) under alkaline conditions with direct UV detection has previously been used to quantify simple sugars in fruit juices. However, it was unclear whether CZE-based methods could be successfully used to quantify the broader range of sugars present in complex plant extracts. Here, we present the development of an optimized CZE method capable of separating and quantifying mono-, di-, and tri-saccharides isolated from plant tissues. This optimized CZE method employs a column electrolyte buffer containing 130 mM NaOH, pH 13.0, creating a current of 185 µA when a separation voltage of 10 kV is employed. The optimized CZE method provides limits-of-detection (an average of 1.5 ng/µL) for individual carbohydrates comparable or superior to those obtained using gas chromatography-mass spectrometry, and allows resolution of non-structural sugars and cell wall components (structural sugars). The optimized CZE method was successfully used to quantify sugars from grape leaves and buds, and is a robust tool for the quantification of plant sugars found in vegetative and woody tissues. The increased analytical efficiency of this CZE method makes it ideal for use in high-throughput metabolomics studies designed to quantify plant sugars.

2.
J Agric Food Chem ; 62(8): 1989-98, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24520932

RESUMEN

Black raspberry (Rubus occidentalis L.) (BR) fruit extracts with differing compound profiles have shown variable antiproliferative activities against HT-29 colon cancer cell lines. This study used partial least-squares (PLS) regression analysis to develop a high-resolution (1)H NMR-based multivariate statistical model for discerning the biological activity of BR constituents. This model identified specific bioactive compounds and ascertained their relative contribution against cancer cell proliferation. Cyanidin 3-rutinoside and cyanidin 3-xylosylrutinoside were the predominant contributors to the extract bioactivity, but salicylic acid derivatives (e.g., salicylic acid glucosyl ester), quercetin 3-glucoside, quercetin 3-rutinoside, p-coumaric acid, epicatechin, methyl ellagic acid derivatives (e.g., methyl ellagic acetyl pentose), and citric acid derivatives also contributed significantly to the antiproliferative activity of the berry extracts. This approach enabled the identification of new bioactive components in BR fruits and demonstrates the utility of the method for assessing chemopreventive compounds in foods and food products.


Asunto(s)
Frutas/química , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Rosaceae/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos
3.
J Agric Food Chem ; 61(49): 12032-43, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24279806

RESUMEN

Nonanthocyanin secondary metabolites potentially contributing to the antiproliferative bioactivity of black raspberry ( Rubus occidentalis L.) fruits were extracted in ethyl acetate and isolated by semipreparative and analytical HPLC and analyzed by NMR, HPLC-ESI-MS, and ESI-MS/MS techniques. Here we present complete and partial structures of a variety of the chemical entities such as quercetin 3-glucoside, quercetin 3-rutinoside, myricetin glucoside, dihydrokaempferol glucoside, benzoic acid ß-d-glucopyranosyl ester, 3,4-dihydroxybenzoic acid, epicatechin, caffeic acid, p-coumaric acid, p-coumaryl glucoside, p-coumaryl sugar ester, ellagic acid, methyl ellagic acid acetylpentose, methyl ellagic acid valerylpentose, trans-piceid, phloretin glucoside (phloridzin), dihydrosinapic acid, salicylic acid ß-d-glucopyranosyl ester, a salicylic acid derivative without attached sugar, p-alkylphenyl glucoside, and a citric acid derivative. To our knowledge, 15 of these compounds were not previously reported in black raspberry fruits.


Asunto(s)
Frutas/química , Extractos Vegetales/química , Rosaceae/química , Cromatografía Líquida de Alta Presión , Frutas/metabolismo , Espectroscopía de Resonancia Magnética , Extractos Vegetales/metabolismo , Rosaceae/metabolismo , Metabolismo Secundario , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA