RESUMEN
Continuous discharge of wastewater, emissions, and solid wastes from steelworks poses environmental risks to ecosystems. However, the role of keystone taxa in maintaining multifunctional stability during environmental disturbances remains poorly understood. To address this, we investigated the community diversity, assembly mechanisms, and soil multifunctionality of soils collected from within the steelworks (I), within 2.5 km radius from the steelworks (E), and from an undisturbed area (CK) in Jiangsu Province, China, via 16 S rRNA sequencing. Significant differences were found in the Chao1 and the richness indexes of the total taxa (p < 0.05), while the diversity of keystone taxa was not significant at each site (p > 0.05). The deterministic processes for total taxa were 42.9%, 61.9% and 47.7% in CK, E, and I, respectively. Steelworks stress increased the deterministicity of keystone taxa from 52.3% in CK to 61.9% in E and I soils. The average multifunctionality indices were 0.518, 0.506 and 0.513 for CK, E and I, respectively. Although the soil multifunctionality was positive correlated with α diversity of both the total and keystone taxa, the average degree of keystone taxa in functional network increased significantly (79.96 and 65.58, respectively), while the average degree of total taxa decreased (44.59 and 51.25, respectively) in the E and I. This suggests keystone taxa contribute to promoting the stability of ecosystems. With increasing disturbance, keystone taxa shift their function from basic metabolism (ribosome biogenesis) to detoxification (xenobiotics biodegradation, metabolism, and benzoate degradation). Here we show that keystone taxa are the most important factor in maintaining stable microbial communities and functions, providing new insights for mitigating pollution stress and soil health protection.
Asunto(s)
Microbiota , Suelo , Microbiología del Suelo , Bacterias/genética , Contaminación AmbientalRESUMEN
Organic fertilizer microbiomes play substantial roles in soil ecological functions, including improving soil structure, crop yield, and pollutant dissipation. However, limited information is available about the ecological functions of phages and phage-encoded auxiliary metabolic genes (AMGs) in orga9nic fertilizers. Here we used a combination of metagenomics and phage transplantation trials to investigate the phage profiles and their potential roles in pesticide degradation in four organic fertilizers from different sources. Phage annotation results indicate that the two vermicomposts made from swine (PV) and cattle (CV) dung had more similar phage community structures than the swine (P) and cattle (C) manures. After vermicomposting, the organic fertilizers (PV and CV) exhibited enriched phage-host pairings and phage AMG diversity in relative to the two organic fertilizers (P and C) without composting. In addition, the number of broad-host-range phages in the vermicomposts (182) was higher than that in swine (153) and cattle (103) manures. Notably, phage AMGs associated with metabolism and pesticide biodegradation were detected across the four organic fertilizers. The phage transplantation demonstrated that vermicompost phages were most effective at facilitating the degradation of pesticide precursor p-nitrochlorobenzene (p-NCB) in soil, as compared to swine and cattle manures (P < 0.05). Taken together, our findings highlight the significance of phages in vermicompost for biogeochemical cycling and biodegradation of pesticide-associated chemicals in contaminated soils.
Asunto(s)
Bacteriófagos , Plaguicidas , Animales , Bovinos , Porcinos , Plaguicidas/toxicidad , Fertilizantes , Bacteriófagos/genética , Biodegradación Ambiental , Estiércol , SueloRESUMEN
Earthworm intestinal bacteria and indigenous soil bacteria work closely during various biochemical processes and play a crucial role in maintaining the internal stability of the soil environment. However, the response mechanism of these bacterial communities to external pesticide disturbance is unknown. In this study, soil and earthworm gut contents were metagenomically sequenced after exposure to various concentrations of nitrochlorobenzene (0-1026.7 mg kg-1). A high degree of similarity was found between the microbial community composition and abundance in the worm gut and soil, both of which decreased significantly (P < 0.05) under elevated pesticide stress. The toxicity sharing model (TSM) showed that the toxicity sharing capacity was 97.4-125.7 % and 100.4-130.2 % for Egenes (genes in the worm gut) and Emet(degradation genes in the worm gut) in the earthworm intestinal microbiome, respectively. This indicated that the earthworm intestinal microbiome assisted in relieving the pesticide toxicity of the indigenous soil microbiome. This study showed that the TSM could quantitatively describe the toxic effect of pesticides on the earthworm intestinal microbiome. It provides a new analytical model for investigating the ecological alliance between earthworm intestinal microbiome and indigenous soil microbiome under pesticide stress while contributing a more profound understanding of the potential to use earthworms to mitigate pesticide pollution in soils and develop earthworm-based soil remediation techniques.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Oligoquetos , Plaguicidas , Contaminantes del Suelo , Animales , Microbioma Gastrointestinal/genética , Oligoquetos/genética , Oligoquetos/microbiología , Plaguicidas/toxicidad , Bacterias/genética , Suelo/química , Contaminantes del Suelo/análisisRESUMEN
Earthworms are important in soil bioremediation because of their capability of pollutant degradation. However, the trade-off between pollutant dissemination and degradation arising from earthworm activities remains unclear, as well as the potential biodegradation mechanism. Herein, an earthworm avoidance experiment was established to investigate Metaphire guillelmi-mediated tetracycline (TC) diffusion and degradation. The results showed that above 1600 mg kg-1 TC pollution in soil induced avoidance behaviour of earthworms (p < 0.05), below which the random worm behaviour accelerated TC diffusion by 8.2% at most (p < 0.05), resulting in elevated levels of antibiotic-resistant bacteria and genes in the soil. Nevertheless, earthworms enhanced TC degradation regardless of whether their avoidance behaviour occurred (14.6-25.8%, p < 0.05). Compared with in soil, metabolic pathways affiliated with xenobiotic degradation and metabolism in the intestines were enriched (LDA >3). Given the abundant glutathione S-transferases in the intestines and their close relationship with Δ degradation, they may play a key role in intestinal TC biodegradation. In general, earthworms had good tolerance to soil TC contamination and their impact on promoting TC degradation outweighed that accelerating TC diffusion. This work provides a comprehensive view of earthworms as a potential remediation method for TC-contaminated soil.
Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Antibacterianos/metabolismo , Oligoquetos/metabolismo , Suelo , Contaminantes del Suelo/análisis , Tetraciclina/metabolismo , Tetraciclina/farmacologíaRESUMEN
Using earthworms to remove soil organic pollutants is a common bioremediation method. However, it remains challenging to evaluate and predict their effect on removing soil organic pollutants based on earthworm toxicology and pollutant degradation rates. Peer-reviewed journal articles on ecotoxicology and bioremediation from the years 1974-2020 (cutoff date September 2020) were selected for meta-analysis to quantify the effect size of earthworms on organic pollutant degradation. The meta-analysis shows that the average effect size of earthworms on organic pollutant degradation is 128.5% (p < 0.05). Soils with high soil organic matter or clay textures are more conducive to earthworm-mediated removal of organic pollutants. Structural equation modeling reveals that earthworms' sensitivity to contaminant exposure may be a greater limiting factor on pollutant degradation than environmental factors. In addition, the quantitative relationship existed between LC50 and the pollutants' degradation that an elevated LC50 threshold resulted in at least 1.5 times increase in the pollutants' degradation size. This correlation was dually confirmed via meta-analysis and the validation trial. The results of this study contribute to a more profound understanding of the potential to use earthworms to mitigate organic pollution in soils and develop earthworm-based soil remediation techniques on a global scale.
Asunto(s)
Contaminantes Ambientales , Oligoquetos , Contaminantes del Suelo , Animales , Biodegradación Ambiental , Contaminantes Ambientales/metabolismo , Oligoquetos/metabolismo , Suelo/química , Contaminantes del Suelo/metabolismoRESUMEN
The continuous input of antibiotics due to frequent anthropogenic activities have increased the dissemination risk of antibiotic resistance genes (ARGs) in forest soil. As soil engineers, it remains unclear whether earthworm intestinal microbial communities might play a role in controlling the ARG proliferation in forest soil. This study collected forest soil in the Yangtze River Delta, China, and its resident Metaphire guillelmi to investigate the interaction between tetracycline (50 µg kg-1) and the bacteria in worm gut and soil. Metagenome sequencing analysis indicated that the abundance of the total ARGs in both the soil (S2) and the worm gut (E2) was 1.3 (p < 0.001) and 1.2 (p < 0.001) times higher than the soil (S1) and (E1) without tetracycline exposure; and under tetracycline stress, the relative abundance of 36 and 20 bacterial genera in forest soil and worm gut were significantly increased respectively. However, the ARGs/ARB abundance decreased in the soil with the worm addition than that without, which may be related to the fact that earthworm intestinal bacteria harbored more tetracycline-degrading genes, i.e. dehydrogenase genes adh, ETFDH, and gpr, etc. Structural equation model analysis indicated that bacteria in worm intestinal has stronger ability to degrade tetracycline than in soil, and the main dissipate way was dehydrogenation. Together, the results contributed to understanding the promising role of worm intestinal bacteria in controlling the ARG risk caused by antibiotic disturbed forest soil.
Asunto(s)
Oligoquetos , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Animales , Bacterias/genética , Bosques , Suelo , Resistencia a la TetraciclinaRESUMEN
Increasing evidence demonstrated the critical role the earthworm gut played in sustaining earthworm's metabolism and transformation of nutrients and pollutants in the environment. Being rich in nutrients, the earthworm gut is favorable for the colonization of (facultative) anaerobic bacteria, which bridge the host earthworm gut with adjacent terrestrial environment. Therefore, the status quo of earthworm gut research was primarily reviewed in this work. It was found that most studies focused on the bacterial composition and diversity of the earthworm gut, and their potential application in nutrient element and pollutant transformation, such as nitrification, methanogens, heavy metal detoxification, etc. Yet limited information was available about the specific mechanism of intestinal bacteria in nutrient and pollutant transformation. Therefore, in this work we highlighted the current problems and concluded the future prospect of worm's intestinal bacteria research. On one hand, high throughput sequencing and bioinformatics tools are critical to break the bottleneck in the intestinal bacteria research via clarifying the molecular mechanism involved in the transformation processes described above. In addition, a global dataset concerning worm gut bacteria will be needed to provide comprehensive information about intestinal bacteria pool, and act as a communication platform to further encourage the progress of worm gut research.
Asunto(s)
Metales Pesados , Oligoquetos , Animales , Bacterias , Bacterias AnaerobiasRESUMEN
Due to the abusive usage of antibiotics in animal husbandry, a large amount of residual antibiotics has been released into the environment, therein posing great threat against both environment security and public health. Therefore, it is of great significance to investigate the toxicity of antibiotics on the widely-applied bioindicator-earthworm. In this work, the physiological parameters and the intestinal bacteria community of Metaphire guillelmi were monitored simultaneously to evaluate their sensitivity to the tetracycline (TC) exposure. As expected, the antioxidant enzyme activity and coelomocyte apoptosis acted fairly well as biomarkers for the TC toxicity. In contrast, the intestinal bacteria of Metaphire guillelmi responded varyingly to different TC doses. When TC concentration increased from 0 to 35.7 µg cm-2, the percentage of the Proteobacteria phylum declined significantly from 85.5% to 34.4%, while the proportions of the Firmicutes, Planctomycetes and Atinomycete phyla clearly increased (p < 0.05). Meanwhile, the levels of TC resistance genes tetA, tetC, and tetW increased with the increasing TC concentration, in contrast to the declined abundance in denitrifying genes nirS and nosZ (p < 0.05). By analyzing the correlation between the antioxidant enzyme activity and the dominant intestinal bacteria in the worm gut, it is interesting to found that the four dominant bacteria genera Mesorhizobium, Aliihoeflea, Romboutsia, and Nitrospira are the promising bioindicator of TC stress due to their sensitive response. This work shed novel light on evaluating the ecotoxicological risks posed by residual TC in environment by using a combination of physiological parameters and intestinal bacterial activity in earthworms.
Asunto(s)
Oligoquetos , Contaminantes del Suelo/análisis , Animales , Antibacterianos , Bacterias , Tetraciclina , Resistencia a la TetraciclinaRESUMEN
Researchers have puzzled over the phenomenon in sensorimotor timing that people tend to tap ahead of time. When synchronizing movements (e.g., finger taps) with an external sequence (e.g., a metronome), humans typically tap tens of milliseconds before event onsets, producing the elusive negative asynchrony. Here, we present 24 metronome-tapping data sets from 8 experiments with different experimental settings, showing that less negative asynchrony is associated with lower tapping variability. Further analyses reveal that this negative mean-SD correlation of asynchrony is likely to be observed for sequence types appropriate for synchronization, as indicated by the statistically negative lag 1 autocorrelation of inter-response intervals. The reported findings indicate an association between negative asynchrony and timing variability.
Asunto(s)
Movimiento/fisiología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Percepción del Tiempo/fisiología , Adolescente , Femenino , Dedos/fisiología , Humanos , Masculino , Factores de Tiempo , Adulto JovenRESUMEN
Sensorimotor timing behaviors typically exhibit an elusive phenomenon known as the negative asynchrony. When synchronizing movements (e.g. finger taps) with an external sequence (e.g. a metronome), people's taps precede event onsets by a few tens of milliseconds. We recently reported that asynchrony is less negative in participants with lower asynchrony variability. This indicates an association between negative asynchrony and variability of timing. Here, in 24 metronome-synchronization data sets, we modeled asynchrony series using a sensorimotor synchronization model that accounts for serial dependence of asynchronies. The results showed that the modeling well captured the negative correlation between the mean and SD of asynchrony. The finding suggests that serial dependence in asynchronies is an essential mechanism of timing variability underlying the association between the mean and SD of asynchrony.
Asunto(s)
Dedos/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Percepción del Tiempo/fisiología , Estimulación Acústica/métodos , Adulto , Análisis de Varianza , Femenino , Humanos , Masculino , Modelos Psicológicos , Factores de TiempoRESUMEN
Earthworm gut played an important role in the transformation of various contaminants in the soil environments. With the increasing application of organic fertilizer recently, the ingestion of antibiotics, antibiotic resistance bacteria (ARB), and antibiotic resistance genes (ARGs) made the earthworm gut a potential favorable micro-environment for the transmission of ARGs in the soil. In this work, the conventional plate incubation and high-throughput sequencing methods were both employed to investigate the composition of the cultivable and overall ARB/ARGs in the Metaphire guillelmi earthworm gut. A total of 87 cultivable isolates that resisted tetracycline (TC) and/or sulfadiazine (SD) were obtained, most of which belonged to phylum Firmicutes, genus Bacillus. Meanwhile, the counts of isolates with TC-SD dual resistance were higher than those with sole SD or TC resistance. Moreover, higher ARB counts and diversity were detected in the earthworm gut by high-throughput sequencing technique than those by the classical plate cultivation. Overall, the combination of conventional cultivable bacteria isolation and high-throughput sequencing methods provided a comprehensive understanding of the ARB composition in the earthworm gut. The results demonstrate that the earthworm gut is a hospitable micro-environment for ARB colonization. The potential role of earthworm intestinal ARB and ARGs proliferation in soil environments warrants further research.
Asunto(s)
Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Oligoquetos/microbiología , Animales , Antibacterianos/análisis , Oligoquetos/fisiología , Contaminantes del Suelo/análisisRESUMEN
Antibiotic resistant pathogenic bacteria (ARPB) residual in soil-plant system has caused serious threat against public health and environmental safety. Being capable of targeted lysing host bacteria, phage therapy has been proposed as promising method to control the ARPB contamination in environments. In this study, microcosm trials were performed to investigate the impact of various phage treatments on the dissipation of tetracycline resistant Escherichia coli K-12 and chloramphenicol resistant Pseudomonas aeruginosa PAO1 in soil-carrot system. After 70â¯days of incubation, all the four phage treatments significantly decreased the abundance of the pathogenic bacteria and the corresponding antibiotic resistance genes (tetW and cmlA) in the soil-carrot system (pâ¯<â¯0.05), following the order of the cocktail phage treatment (phages ΦYSZ1â¯+â¯ΦYSZ2)â¯>â¯the polyvalent phage (ΦYSZ3 phage with broad host range) treatmentâ¯>â¯host-specific phage (ΦYSZ2 and ΦYSZ1) treatmentsâ¯>â¯the control. In addition, the polyvalent phage treatment also exerted positive impact on the diversity and stability of the bacterial community in the system, suggesting that this is an environmentally friendly technique with broad applications in the biocontrol of ARPB/ARGs in soil-plant system.
Asunto(s)
Bacteriófagos/fisiología , Farmacorresistencia Microbiana , Escherichia coli K12/virología , Pseudomonas aeruginosa/virología , Microbiología del Suelo , Biodiversidad , Agentes de Control Biológico , Daucus carota/microbiología , Escherichia coli K12/efectos de los fármacos , Escherichia coli K12/patogenicidad , Consorcios Microbianos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Resistencia a la TetraciclinaRESUMEN
Coexistence of antibiotics/heavy metals and the overexpression of resistance genes in the vermicompost has become an emerging environmental issue. Little is known about the interaction and correlation between chemical pollutants and biological macromolecular compounds. In this study, three typical vermicompost samples were selected from the Yangtze River Delta region in China to investigate the antibiotic, heavy metal and corresponding antibiotic resistance genes (ARGs) and heavy metal resistance genes (HRGs). The results indicated the prevalence of tetracycline (TC), copper (Cu), zinc (Zn), cadmium (Cd), corresponding TC-resistance genes (tetA, tetC, tetW, tetM, tetO, and tetS) and HRGs (copA, pcoA, cusA, czcA, czcB, and czcR) in the three vermicompost samples. In addition, the ARG level was positively associated with the water-soluble TC fraction in the vermicompost, and it was same between the HRG abundance and exchangeable heavy metal content (pâ¯<â¯0.05). Moreover, a positive correlation was found between ARG and HRG abundance in the vermicompost samples, suggesting a close regulation mechanism involving the expression of both genes. The result obtained here could provide new insight into the controlling risk of heavy metals, TC, and relevant resistance genes mixed contamination in the vermicompost.