Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
NPJ Sci Food ; 8(1): 33, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890318

RESUMEN

Fermenting Chinese medicinal herbs could enhance their bioactivities. We hypothesized probiotic-fermented gastrodia elata Blume (GE) with better potential to alleviate insomnia than that of unfermented, thus the changes in chemical composition and the insomnia-alleviating effects and mechanisms of fermented GE on pentylenetetrazole (PTZ)-induced insomnia zebrafish were explored via high-performance liquid chromatography (HPLC) and mass spectroscopy-coupled HPLC (HPLC-MS), phenotypic, transcriptomic, and metabolomics analysis. The results demonstrated that probiotic fermented GE performed better than unfermented GE in increasing the content of chemical composition, reducing the displacement, average speed, and number of apoptotic cells in zebrafish with insomnia. Metabolomic investigation showed that the anti-insomnia effect was related to regulating the pathways of actin cytoskeleton and neuroactive ligand-receptor interactions. Transcriptomic and reverse transcription qPCR (RT-qPCR) analysis revealed that secondary fermentation liquid (SFL) significantly modulated the expression levels of neurod1, msh2, msh3, recql4, ercc5, rad5lc, and rev3l, which are mainly involved in neuron differentiation and DNA repair. Collectively, as a functional food, fermented GE possessed potential for insomnia alleviation.

2.
Angew Chem Int Ed Engl ; 63(2): e202314266, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940614

RESUMEN

Co-based metal-organic frameworks (MOFs) as electrocatalysts for two-electron oxygen reduction reaction (2e- ORR) are highly promising for H2 O2 production, but suffer from the intrinsic activity-selectivity trade-off. Herein, we report a ZnCo bimetal-triazole framework (ZnCo-MTF) as high-efficiency 2e- ORR electrocatalysts. The experimental and theoretical results demonstrate that the coordination between 1,2,3-triazole and Co increases the antibonding-orbital occupancy on the Co-N bond, promoting the activation of Co center. Besides, the adjacent Zn-Co sites on 1,2,3-triazole enable an asymmetric "side-on" adsorption mode of O2 , favoring the reduction of O2 molecules and desorption of OOH* intermediate. By virtue of the unique ligand effect, the ZnCo-MTF exhibits a 2e- ORR selectivity of ≈100 %, onset potential of 0.614 V and H2 O2 production rate of 5.55 mol gcat -1 h-1 , superior to the state-of-the-art zeolite imidazole frameworks. Our work paves the way for the design of 2e- ORR electrocatalysts with desirable coordination and electronic structure.

3.
J Coll Physicians Surg Pak ; 32(8): S124-S126, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36210669

RESUMEN

Fishbone is the most common ingested gastrointestinal foreign matter and is less than 1% perforate. However, a fishbone penetrating the gastrointestinal tract and causing granulomatous inflammation of the greater omentum with local suppuration is not common. Because of the nonspecific clinical symptoms, gastrointestinal perforation may be manifested only as dull abdominal pain, which is often ignored and timely clinical treatment may be delayed. We report a case of a 61-year male who experienced intermittent right median ventral abdominal pain for half a year. These symptoms were the result of granulomatous inflammation of the greater omentum with local suppuration caused by a migrating fishbone (3.5 cm in length). Finally, the fishbone was removed by exploratory laparotomy. Key Words: Fishbone, Gastrointestinal perforation, Greater omentum, Granulomatous inflammation, Laparotomy.


Asunto(s)
Cuerpos Extraños , Epiplón , Dolor Abdominal/etiología , Cuerpos Extraños/complicaciones , Cuerpos Extraños/cirugía , Humanos , Inflamación/complicaciones , Masculino , Supuración/complicaciones
4.
Curr Med Chem ; 29(30): 5062-5075, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35362371

RESUMEN

The incidence of malignant tumors is rising rapidly and tends to be in the younger, which has been one of the most important factors endangering the safety of human life. Ultrasound micro/nanobubbles, as a noninvasive and highly specific antitumor strategy, can reach and destroy tumor tissue through their effects of cavitation and acoustic perforation under the guidance of ultrasound. Meanwhile, micro/nanobubbles are now used as a novel drug carrier, releasing drugs at a target region, especially on the prospects of biomaterial-modified micro/nanobubbles as a dual modality for drug delivery and therapeutic monitoring. Successful evaluation of the sonoporation mechanism(s), ultrasound parameters, drug type, and dose will need to be addressed before translating this technology for clinical use. Therefore, this paper collects the literature on the experimental and clinical studies of ultrasound biomaterial-modified micro/nanobubbles therapy in vitro and in vivo in recent years.


Asunto(s)
Materiales Biocompatibles , Sistemas de Liberación de Medicamentos , Portadores de Fármacos , Humanos , Ultrasonografía
5.
Poult Sci ; 100(12): 101474, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34742122

RESUMEN

In a broiler carcass production conveyor system, inspection, monitoring, and grading carcass and cuts based on computer vision techniques are challenging due to cuts segmentation and ambient light conditions issues. This study presents a depth image-based broiler carcass weight prediction system. An Active Shape Model was developed to segment the carcass into 4 cuts (drumsticks, breasts, wings, and head and neck). Five regression models were developed based on the image features for each weight estimation (carcass and its cuts). The Bayesian-ANN model outperformed all other regression models at 0.9981 R2 and 0.9847 R2 in the whole carcass and head and neck weight estimation. The RBF-SVR model surpassed all the other drumstick, breast, and wings weight prediction models at 0.9129 R2, 0.9352 R2, and 0.9896 R2, respectively. This proposed technique can be applied as a nondestructive, nonintrusive, and accurate on-line broiler carcass production system in the automation of chicken carcass and cuts weight estimation.


Asunto(s)
Pollos , Carne , Animales , Inteligencia Artificial , Teorema de Bayes , Carne/análisis
6.
Zhongguo Zhong Yao Za Zhi ; 46(19): 5064-5071, 2021 Oct.
Artículo en Chino | MEDLINE | ID: mdl-34738402

RESUMEN

The present study investigated the effects of chikusetsu saponin Ⅳa(CHS Ⅳa) on isoproterenol(ISO)-induced myocardial hypertrophy in rats and explored the underlying molecular mechanism. ISO was applied to establish a rat model of myocardial hypertrophy, and CHS Ⅳa(5 and 15 mg·kg~(-1)·d~(-1)) was used for intervention. The tail artery blood pressure was measured. Cardiac ultrasound examination was performed. The ratio of heart weight to body weight(HW/BW) was calculated. Morphological changes in the myocardial tissue were observed by HE staining. Collagen deposition in the myocardial tissue was observed by Masson staining. The mRNA expression of myocardial hypertrophy indicators(ANP and BNP), autophagy-related genes(Atg5, P62 and beclin1), and miR199 a-5 p was detected by qRT-PCR. Atg5 protein expression was detected by Western blot. The results showed that the model group exhibited increased tail artery blood pressure and HW/BW ratio, thickened left ventricular myocardium, enlarged myocardial cells, disordered myocardial fibers with widened interstitium, and a large amount of collagen aggregating around the extracellular matrix and blood vessels. ANP and BNP were largely expressed. Moreover, P62 expression was up-regulated, while beclin1 expression was down-regulated. After intervention by CHS Ⅳa at different doses, myocardial hypertrophy was ameliorated and autophagy activity in the myocardial tissue was enhanced. Meanwhile, miR199 a-5 p expression declined and Atg5 expression increased. As predicted by bioinformatics, Atg5 was a target gene of miR199 a-5 p. CHS Ⅳa was capable of preventing myocardial hypertrophy by regulating autophagy of myocardial cells through the miR-199 a-5 p/Atg5 signaling pathway.


Asunto(s)
Ácido Oleanólico , Saponinas , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/genética , Isoproterenol , Miocardio , Miocitos Cardíacos , Ácido Oleanólico/análogos & derivados , Ratas , Saponinas/farmacología
7.
Materials (Basel) ; 14(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34443273

RESUMEN

Lithium-rich manganese oxide is a promising candidate for the next-generation cathode material of lithium-ion batteries because of its low cost and high specific capacity. Herein, a series of xLi2MnO3·(1 - x)LiMnO2 nanocomposites were designed via an ingenious one-step dynamic hydrothermal route. A high concentration of alkaline solution, intense hydrothermal conditions, and stirring were used to obtain nanoparticles with a large surface area and uniform dispersity. The experimental results demonstrate that 0.072Li2MnO3·0.928LiMnO2 nanoparticles exhibit a desirable electrochemical performance and deliver a high capacity of 196.4 mAh g-1 at 0.1 C. This capacity was maintained at 190.5 mAh g-1 with a retention rate of 97.0% by the 50th cycle, which demonstrates the excellent cycling stability. Furthermore, XRD characterization of the cycled electrode indicates that the Li2MnO3 phase of the composite is inert, even under a high potential (4.8 V), which is in contrast with most previous reports of lithium-rich materials. The inertness of Li2MnO3 is attributed to its high crystallinity and few structural defects, which make it difficult to activate. Hence, the final products demonstrate a favorable electrochemical performance with appropriate proportions of two phases in the composite, as high contents of inert Li2MnO3 lower the capacity, while a sufficient structural stability cannot be achieved with low contents. The findings indicate that controlling the composition through a dynamic hydrothermal route is an effective strategy for developing a Mn-based cathode material for lithium-ion batteries.

8.
Sci Rep ; 11(1): 14486, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262084

RESUMEN

Krabbe disease (KD) and metachromatic leukodystrophy (MLD) are caused by accumulation of the glycolipids galactosylceramide (GalCer) and sulfatide and their toxic metabolites psychosine and lysosulfatide, respectively. We discovered a potent and selective small molecule inhibitor (S202) of ceramide galactosyltransferase (CGT), the key enzyme for GalCer biosynthesis, and characterized its use as substrate reduction therapy (SRT). Treating a KD mouse model with S202 dose-dependently reduced GalCer and psychosine in the central (CNS) and peripheral (PNS) nervous systems and significantly increased lifespan. Similarly, treating an MLD mouse model decreased sulfatides and lysosulfatide levels. Interestingly, lower doses of S202 partially inhibited CGT and selectively reduced synthesis of non-hydroxylated forms of GalCer and sulfatide, which appear to be the primary source of psychosine and lysosulfatide. Higher doses of S202 more completely inhibited CGT and reduced the levels of both non-hydroxylated and hydroxylated forms of GalCer and sulfatide. Despite the significant benefits observed in murine models of KD and MLD, chronic CGT inhibition negatively impacted both the CNS and PNS of wild-type mice. Therefore, further studies are necessary to elucidate the full therapeutic potential of CGT inhibition.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Leucodistrofia de Células Globoides/tratamiento farmacológico , Leucodistrofia Metacromática/tratamiento farmacológico , N-Acilesfingosina Galactosiltransferasa/antagonistas & inhibidores , N-Acilesfingosina Galactosiltransferasa/metabolismo , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/administración & dosificación , Galactosilceramidas/metabolismo , Balactosiltransferasa de Gangliósidos/genética , Balactosiltransferasa de Gangliósidos/metabolismo , Humanos , Leucodistrofia de Células Globoides/mortalidad , Leucodistrofia Metacromática/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Psicosina/análogos & derivados , Psicosina/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Sulfotransferasas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-34257687

RESUMEN

BACKGROUND: To create an animal model for diabetic ulcers with semi-Yin and semi-Yang (SYSY) syndrome and to study the pathological and metabolic features of SYSY syndrome. METHODS: Firstly, based on the clinical characteristics of the SYSY syndrome of diabetic ulcer, an animal model of diabetic ulcers with SYSY syndrome being full-thickness skin defects was created by injecting streptozotocin (STZ) intraperitoneally, infecting with Staphylococcus aureus, and gastrically administering senna. Secondly, the content and distribution patterns of collagen fibers, the expression of neutrophils and macrophage markers, angiogenesis, and the expression of IL-1ß and IL-10 in the rats with Yang syndrome, Yin syndrome, and SYSY syndrome of diabetic ulcers at different time points were detected. Representative traditional Chinese medicine (TCM) ointment of Yang syndrome, Yin syndrome, and SYSY syndrome was used to treat this animal model. The above indexes in each treatment group were detected. Finally, metabonomics was used to detect and analyze the changes of differential metabolites related to macrophage metabolism in Yang, Yin, and SYSY syndromes at different time points. RESULTS: An animal model of diabetic ulcers with SYSY syndrome was established. The pathological features of the SYSY syndrome group were chronic low-grade inflammatory reactions. On the third day, the SYSY syndrome group displayed lower expression of CD16, CD68, CD163, IL-1ß, and metabolites related to M1-type macrophages compared with other groups. On the seventh day, the SYSY syndrome group showed lower expression of CD31, IL-10, myeloperoxidase, and metabolites related to M2-type macrophages. Treatment with Chong He Ointment, a representative TCM ointment for SYSY syndrome, reversed the expression levels of these indexes and promoted wound healing in the SYSY group. CONCLUSION: SYSY syndrome presents a persistent pathological state of low inflammation, which may be caused by an insufficient activation of the M1-type metabolic pathway in macrophages in the early acute inflammatory stage, resulting in the incomplete clearance of pathogens and debris and continuous stimulation of macrophages to initiate the M1-type metabolic pathway. CD163, CD31, IL-10, and citric acid can be used as potential specific markers for the recovery and progression of SYSY syndrome.

10.
J Coll Physicians Surg Pak ; 31(8): 937-940, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34320711

RESUMEN

OBJECTIVE: To investigate the expression of miR-22-3p in breast cancer and the mechanism of targeting PLAGL2 to inhibit the invasion and migration in human breast cancer. STUDY DESIGN: An experimental study. PLACE AND DURATION OF STUDY: Department of Oncology and Department of General Surgery, The People's Hospital of China Three Gorges University, China, from March 2019 to December 2020. METHODOLOGY: The miR-22-3p expression level in 41 paired human primary breast invasive ductal carcinoma tissues and para-cancer tissues was obtained by real-time fluorescence quantitative reverse transcriptase PCR (qRT-PCR). The effect of miR-22-3p on the proliferation of breast cancer cells was detected by growth curve method. Online software TargetScan was used to predict the target genes of miR-22-3p. The prediction results were verified by luciferase reporter gene assay and qRT⁃PCR. RESULTS: MiR-22-3p expression was significantly decreased in the breast cancer tissues than in para⁃carcinoma normal breast tissues (p<0.05). Over-expression of miR-22-3p can inhibit the proliferation of MCF-7 cells significantly. Pleomorphic adenoma gene-like protein 2(PLAGL2) is the predicted target gene of miR-22-3p. MiR-22-3p binds to its predicted target gene PLAGL2-3'UTR. The expression of miR-22-3p was negatively correlated with PLAGL2 in MCF-7 cells. CONCLUSION: MiR-22-3p could suppress the proliferation of breast cancer by targeting PLAGL2. This suggests that miR-22-3p may be a strategy of choice for targeted therapy of breast cancer. Key Words: Breast cancer, MiR-22-3p, PLAGL2, Cell proliferation.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , China , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética
11.
Food Sci Nutr ; 9(5): 2402-2413, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34026059

RESUMEN

Paeonia ludlowii, a plant of the Paeoniaceae family, has abundant genetic diversity in different populations, and the seed oil can be used in a diverse number of activities. However, its neuroprotective effect is not clear. We investigated the memory-improving effects and associated mechanisms of Paeonia ludlowii seed oil (PLSO) on amyloid beta (Aß)25-35-induced Alzheimer's disease (AD) in rats. The Morris water maze test was undertaken, and subsequently, the content of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and acetylcholinesterase (ACHE) in the hippocampus was detected by biochemical analyses. To further study PLSO, we examined the pathologic structure and apoptosis of hippocampal tissue by staining. Immunohistochemical analysis was used to detect expression of IBA-1 and GFAP in the hippocampus. Detection of proinflammatory factors was achieved by reverse transcription-quantitative polymerase chain reaction and Western blotting. High-dose PLSO inhibited expression of GFAP and IBA-1. We demonstrated that high-dose PLSO can regulate activation of glial cells and mediate apoptosis of hippocampal cells, and significantly improve learning and memory deficits in AD rats. PLSO could be developed as a nutritional supplement and sold as a drug for AD prevention and/or treatment.

12.
Zhongguo Zhong Yao Za Zhi ; 46(9): 2260-2266, 2021 May.
Artículo en Chino | MEDLINE | ID: mdl-34047129

RESUMEN

Non-alcoholic steatohepatitis(NASH) was induced by high-sugar and high-fat diet in mice to investigate the intervention effect of total saponins from Panax japonicus(TSPJ) and explore its possible mechanism. Mice were fed with high-sugar and high-fat diet to establish NASH model, and intervened with different doses of TSPJ(15, 45 mg·kg~(-1)). The animals were fed for 26 weeks. The histomorphology and pathological changes of liver tissues were observed by HE staining. The transcriptional expression levels of miR-199 a-5 p, autophagy related gene 5(ATG5) and inflammatory cytokines interleukin-6(IL-6), interleukin-1ß(IL-1ß) and tumor necrosis factor α(TNF-α) in mouse liver were measured by quantitative Real-time polymerase chain reaction(qRT-PCR). Western blot was used to detect the expression of autophagy-related proteins ATG5, P62/SQSTM1(P62), and microtubule-associated protein light chain 3(LC3)-I/Ⅱ proteins in mouse liver. The expression of P62 protein was detected by immunofluorescence staining. In order to verify the targeting regulation relationship between miR-199 a-5 p and ATG5, miR mimic/inhibitor NC and miR-199 a-5 p mimic/inhibitor were transfected into Hepa 1-6 cells, and the expression of ATG5 mRNA and protein was detected. pMIR-reportor ATG5-3'UTR luciferase reporter gene plasmid was constructed and co-transfected with miR mimic/inhibitor NC and miR-199 a-5 p mimic/inhibitor into Hepa 1-6 cells to detect luciferase activity. In vivo, HE staining in the model group showed typical fatty degeneration and inflammatory infiltration, with increased expression of miR-199 a-5 p and decreased expression of ATG5 mRNA and protein. The expression of autophagy-associated protein P62 increased significantly, the ratio of LC3Ⅱ/Ⅰ decreased, and the transcriptional expression of inflammatory factors increased significantly. After the intervention by TSPJ, the pathological performance of liver tissue was significantly improved, the expression of miR-199 a-5 p decreased and the expression of ATG5 mRNA and protein increased, the expression of autophagy-associated protein P62 decreased significantly, the ratio of LC3Ⅱ/Ⅰ increased, and the transcriptional expression of inflammatory cytokines IL-6, IL-1ß and TNF-α decreased significantly. In vitro, it was found that the expression of ATG5 mRNA and protein and luciferase activity decreased significantly in miR-199 a-5 p overexpression cells, while after inhibition of miR-199 a-5 p expression, the expression level of ATG5 mRNA and protein and luciferase activity increased. The results showed that TSPJ can improve NASH in mice fed with high-sugar and high-fat diet, and its mechanism may be related to the regulation of miR-199 a-5 p/ATG5 signal pathway, the regulation of autophagy activity and the improvement of inflammatory response of NASH.


Asunto(s)
MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Panax , Saponinas , Animales , Autofagia , Proteína 5 Relacionada con la Autofagia , Ratones , MicroARNs/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Saponinas/farmacología
13.
Hum Pathol ; 113: 92-103, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33905777

RESUMEN

Information on bronchoalveolar lavage (BAL) in patients with COVID-19 is limited, and clinical correlation has not been reported. This study investigated the key features of BAL fluids from COVID-19 patients and assessed their clinical significance. A total of 320 BAL samples from 83 COVID-19 patients and 70 non-COVID-19 patients (27 patients with other respiratory viral infections) were evaluated, including cell count/differential, morphology, flow cytometric immunophenotyping, and immunohistochemistry. The findings were correlated with clinical outcomes. Compared to non-COVID-19 patients, BAL from COVID-19 patients was characterized by significant lymphocytosis (p < 0.001), in contrast to peripheral blood lymphopenia commonly observed in COVID-19 patients and the presence of atypical lymphocytes with plasmacytoid/plasmablastic features (p < 0.001). Flow cytometry and immunohistochemistry demonstrated that BAL lymphocytes, including plasmacytoid and plasmablastic cells, were composed predominantly of T cells with a mixture of CD4+ and CD8+ cells. Both populations had increased expression of T-cell activation markers, suggesting important roles of helper and cytotoxic T-cells in the immune response to SARS-CoV-2 infection in the lung. More importantly, BAL lymphocytosis was significantly associated with longer hospital stay (p < 0.05) and longer requirement for mechanical ventilation (p < 0.05), whereas the median atypical (activated) lymphocyte count was associated with shorter hospital stay (p < 0.05), shorter time on mechanical ventilation (p < 0.05) and improved survival. Our results indicate that BAL cellular analysis and morphologic findings provide additional important information for diagnostic and prognostic work-up, and potential new therapeutic strategies for patients with severe COVID-19.


Asunto(s)
Líquido del Lavado Bronquioalveolar/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Pulmón/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Líquido del Lavado Bronquioalveolar/citología , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2
14.
AMB Express ; 11(1): 35, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33646441

RESUMEN

Aflatoxin B1 (AFB1) is one of the most dangerous mycotoxins for humans and animals. This study aimed to investigate the effects of compound probiotics (CP), CP supernatant (CPS), AFB1-degradation enzyme (ADE) on chicken embryo primary intestinal epithelium, liver and kidney cell viabilities, and to determine the functions of CP + ADE (CPADE) or CPS + ADE (CPSADE) for alleviating cytotoxicity induced by AFB1. The results showed that AFB1 decreased cell viabilities in dose-dependent and time-dependent manners. The optimal AFB1 concentrations and reactive time for establishing cell damage models were 200 µg/L AFB1 and 12 h for intestinal epithelium cells, 40 µg/L and 12 h for liver and kidney cells. Cell viabilities reached 231.58% (p < 0.05) for intestinal epithelium cells with CP addition, 105.29% and 115.84% (p < 0.05) for kidney and liver cells with CPS additions. The further results showed that intestinal epithelium, liver and kidney cell viabilities were significantly decreased to 87.12%, 88.7% and 84.19% (p < 0.05) when the cells were exposed to AFB1; however, they were increased to 93.49% by CPADE addition, 102.33% and 94.71% by CPSADE additions (p < 0.05). The relative mRNA abundances of IL-6, IL-8, TNF-α, iNOS, NF-κB, NOD1 (except liver cell) and TLR2 in three kinds of primary cells were significantly down-regulated by CPADE or CPSADE addition, compared with single AFB1 group (p < 0.05), indicating that CPADE or CPSADE addition could alleviate cell cytotoxicity and inflammation induced by AFB1 exposure through suppressing the activations of NF-κB, iNOS, NOD1 and TLR2 pathways.

15.
Poult Sci ; 100(5): 101072, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33752071

RESUMEN

The appearance, size, and weight of poultry meat and eggs are essential for production economics and vital in the poultry sector. These external characteristics influence their market price and consumers' preference and choice. With technological developments, there is an increase in the application and importance of vision systems in the agricultural sector. Computer vision has become a promising tool in the real-time automation of poultry weighing and processing systems. Owing to its noninvasive and nonintrusive nature and its capacity to present a wide range of information, computer vision systems can be applied in the size, mass, volume determination, and sorting and grading of poultry products. This review article gives a detailed summary of the current advances in measuring poultry products' external characteristics based on computer vision systems. An overview of computer vision systems is discussed and summarized. A comprehensive presentation of the application of computer vision-based systems for assessing poultry meat and eggs was provided, that is, weight and volume estimation, sorting, and classification. Finally, the challenges and potential future trends in size, weight, and volume estimation of poultry products are reported.


Asunto(s)
Pollos , Aves de Corral , Animales , Inteligencia Artificial , Carne , Óvulo , Productos Avícolas
16.
Neural Regen Res ; 16(8): 1592-1597, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33433489

RESUMEN

Cerebrovascular endothelial dysfunction is involved in the progression of leukoaraiosis. Asymmetric dimethylarginine is a competitive inhibitor of nitric oxide, which is highly expressed in patients with leukoaraiosis. Dimethylarginine dimethylaminohydrolase (DDAH) is a hydrolytic enzyme that is primarily responsible for eliminating asymmetric dimethylarginine, and it plays a role in the pathogenesis of cardiovascular and cerebrovascular diseases. The DDAH2 subtype is expressed in organs rich in induced nitric oxide synthase, including the heart, the placenta, and the cerebral endothelium during cerebral ischemia, in the stress state, or under neurotoxicity. Overexpression of the DDAH2 gene can inhibit asymmetric dimethylarginine-induced peripheral circulating endothelial cell dysfunction. However, it is unknown whether this polymorphism regulates plasma asymmetric dimethylarginine levels in patients with leukoaraiosis. In this double-blind study, we recruited 46 patients with leukoaraiosis and 46 healthy, matched controls. Plasma asymmetric dimethylarginine levels were determined using enzyme-linked immunoassays. Genomic DNA was isolated from whole blood samples, and polymerase chain reaction, SmaI restriction enzyme digestion, restriction fragment length polymorphisms, and agarose electrophoresis were used to detect DDAH2 (-449 G/C) gene polymorphisms. The results revealed that 95.65% of leukoaraiosis patients had recessive genetic models (GG and CG), while 89.13% of healthy control subjects had dominant genetic models (CC and CG). There was a significant difference in the genotype composition ratio between leukoaraiosis patients and healthy controls (P = 0.0002). The frequency of G alleles in the leukoaraiosis patients (71.74%) was significantly higher than in healthy controls, whereas the frequency of C alleles was lower (χ2 = 13.9580, P = 0.0002). Furthermore, asymmetric dimethylarginine concentrations in subjects with the GG genotype were significantly higher than in subjects with the CG and CC genotypes (Kruskal-Wallis H = 24.5955, P < 0.0001). In addition, the GG genotype of DDAH2 (-449 G/C) was more common in patients with leukoaraiosis. These findings suggest that the G allele of DDAH2 (-449 G/C) is a risk factor for leukoaraiosis morbidity and is correlated with high levels of asymmetric dimethylarginine. This study was approved by the Institutional Ethics Committee of The 2nd Affiliated Hospital of Harbin Medical University of China (approval No. KY2016-177) on July 28, 2016.

18.
Pancreatology ; 21(1): 240-245, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33191144

RESUMEN

PURPOSE: To explore the diagnostic value of pancreatic perfusion CT combined with contrast-enhanced CT in one-time scanning (PCECT) in pancreatic neuroendocrine tumors (PNETs) and to evaluate the difference of perfusion parameters between different grades of PNETs. MATERIALS AND METHODS: From October 2016 to December 2018, forty consecutive patients with histopathological-proven PNETs were identified retrospectively that received PCECT for the preoperative PNETs evaluation. Two board certified radiologists who were blinded to the clinical data evaluated the images independently. The image characters of PNETs vs. tumor-free pancreatic parenchymal and different grades of PNETs were analyzed. RESULTS: One-time PCECT scanning had a detection rate of 89.1% for PNETs, which was higher than the detection accuracy of the perfusion CT only (83.6%). The perfusion parameters of PNETs including blood volume (BV), blood flow (BF), mean slope of increase (MSI), and capillary surface permeability (PS) were significantly increased than those of tumor-free pancreatic parenchyma (p < 0.05, respectively). For differential comparison between grade I (G1) and grade II (G2) tumors, the parameters of BF and impulse residue function (IRF) of tumor tissue were significantly higher in the G2 tumors (p < 0.05, for both). In this study, the total radiation dose of the whole PCECT scan was 16.241 ± 2.289 mSv. CONCLUSION: The one-time PCECT scan may improve the detection of PNETs according to morphological features and perfusion parameters with a relative small radiation dose. The perfusion parameters of BF and IRF may be used to help distinguish G1 and G2 tumors in the preoperative evaluation.


Asunto(s)
Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/diagnóstico , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/diagnóstico , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Volumen Sanguíneo , Medios de Contraste , Femenino , Humanos , Aumento de la Imagen , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Tumores Neuroendocrinos/irrigación sanguínea , Neoplasias Pancreáticas/irrigación sanguínea , Imagen de Perfusión , Dosis de Radiación , Flujo Sanguíneo Regional , Estudios Retrospectivos
19.
Zhongguo Zhong Yao Za Zhi ; 45(19): 4725-4731, 2020 Oct.
Artículo en Chino | MEDLINE | ID: mdl-33164439

RESUMEN

To study the effect of Panax japonicas saponin Ⅳa(SPJ-Ⅳa) on nonalcoholic steatohepatitis(NASH) through miR-17-5 p/MFN2 signaling pathway. The nonalcoholic steatohepatitis model was induced by a high-fat diet combined with CCl_4 in Balb/c male mice. The mouse serum and liver were collected, the body weight and liver weight were measured, the liver index was calculated, and the serum biochemical indicators alanine amino transferase(ALT), triglyceride(TG), and glucose(Glu) were measured. The morphological changes in the liver were detected by HE and Masson staining, Real-time PCR was used to detect lipid metabolism-related genes, inflammation-related genes interleukin-6(IL-6) and interleukin-1ß(IL-1ß), miR-17-5 p and MFN2 expressions, and Western blot was used to detect MFN2 protein expression level. Compared with the normal control group, the liver index in the HFD+CCl_4 group was significantly increased, and the contents of ALT, TG, and Glu were significantly increased; the morphology showed obvious steatosis and collagen fiber deposition; mRNA expression levels of lipid metabolism-related genes, inflammation-related genes and miR-17-5 p increased significantly, the mRNA expression level of MFN2 decreased significantly, and the protein level of MFN2 decreased. After intervention with SPJ-Ⅳa, the levels of ALT, TG and Glu decreased, morphological steatosis decreased, collagen fiber deposition decreased, and mRNA expression levels of lipid metabolism-related genes, inflammation-related genes and miR-17-5 p decreased. The mRNA expression level of MFN2 increased, and the protein level of MFN2 also increased. The results of this study indicated that miR-17-5 p/MFN2 signaling pathway may be involved in the occurrence and development of NASH, and SPJ-Ⅳa had a protective effect on NASH, its mechanism may be related to the regulation of miR-17-5 p/MFN2 signaling pathway.


Asunto(s)
MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Panax , Saponinas , Animales , Dieta Alta en Grasa , GTP Fosfohidrolasas , Hígado , Masculino , Ratones , MicroARNs/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Saponinas/farmacología , Transducción de Señal
20.
J Oleo Sci ; 69(9): 1001-1009, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32788519

RESUMEN

To determine the food potential of Paeonia ludlowii D.Y.Hong (P. ludlowii) kernel oil, in this study, we analysed the fatty acid composition and volatile components of this oil, compared the antioxidant effects of two natural antioxidants on it, and then predicted its shelf life at room temperature (25°C). The results showed that P. ludlowii kernel oil mainly contained 20 fatty acids, of which linoleic acid, oleic acid and other unsaturated fatty acid contents together made up 86.99%. The aromatic composition of the crude P. ludlowii kernel oil was analysed, and 34 aromatic compounds were obtained, including 5 lipids (2.30%), 9 alcohols (12.64%), 6 aldehydes (14.67%), 2 alkanes (1.30%), 5 acids (2.70%), 1 ketone (0.41), 2 alkenes (39.12%) and 4 other substances (26.85%). The effects of the antioxidants were ranked as follows: 0.04% tea polyphenols + crude oil > 0.04% bamboo flavonoids + crude oil > crude oil. In addition, the shelf lives at room temperature (25℃) of each kernel oil-antioxidant mixture were 200.73 d, 134.90 d and 131.61 d, respectively. Overall, these results reveal that P. ludlowii kernel oil is a potential candidate for a new high-grade edible oil, and its development has broad application prospects.


Asunto(s)
Ácidos Grasos Insaturados/análisis , Ácidos Grasos Volátiles/análisis , Calidad de los Alimentos , Almacenamiento de Alimentos , Paeonia/química , Aceites de Plantas/química , Antioxidantes , Ácidos Grasos Insaturados/química , Ácidos Grasos Volátiles/química , Ácido Linoleico/análisis , Ácido Oléico/análisis , Aceites de Plantas/aislamiento & purificación , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA