RESUMEN
BACKGROUND: Ketamine has recently attracted considerable attention for its rapid effects on patients with major depressive disorder, including treatment-resistant depression (TRD). Despite ketamine's promising results in treating depression, a significant number of patients do not respond to the treatment, and predicting who will benefit remains a challenge. Although its antidepressant effects are known to be linked to its action as an antagonist of the N-methyl-D-aspartate (NMDA) receptor, the precise mechanisms that determine why some patients respond and others do not are still unclear. OBJECTIVE: This study aims to understand the computational mechanisms underlying changes in the auditory mismatch negativity (MMN) response following treatment with intravenous ketamine. Moreover, we aim to link the computational mechanisms to their underlying neural causes and use the parameters of the neurocomputational model to make individual treatment predictions. METHODS: This is a prospective study of 30 patients with TRD who are undergoing intravenous ketamine therapy. Prior to 3 out of 4 ketamine infusions, EEG will be recorded while patients complete the auditory MMN task. Depression, suicidality, and anxiety will be assessed throughout the study and a week after the last ketamine infusion. To translate the effects of ketamine on the MMN to computational mechanisms, we will model changes in the auditory MMN using the hierarchical Gaussian filter, a hierarchical Bayesian model. Furthermore, we will employ a conductance-based neural mass model of the electrophysiological data to link these computational mechanisms to their neural causes. CONCLUSION: The findings of this study may improve understanding of the mechanisms underlying response and resistance to ketamine treatment in patients with TRD. The parameters obtained from fitting computational models to EEG recordings may facilitate single-patient treatment predictions, which could provide clinically useful prognostic information. TRIAL REGISTRATION: Clinicaltrials.gov NCT05464264. Registered June 24, 2022.
Asunto(s)
Trastorno Depresivo Resistente al Tratamiento , Electroencefalografía , Ketamina , Ketamina/uso terapéutico , Ketamina/farmacología , Ketamina/administración & dosificación , Humanos , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Trastorno Depresivo Resistente al Tratamiento/fisiopatología , Adulto , Estudios Prospectivos , Antidepresivos/uso terapéutico , Antidepresivos/farmacología , Masculino , Femenino , Potenciales Evocados Auditivos/efectos de los fármacos , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/fisiopatología , Resultado del Tratamiento , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Persona de Mediana Edad , Adulto JovenRESUMEN
BACKGROUND: The Toronto Adolescent and Youth (TAY) Cohort Study will characterize the neurobiological trajectories of psychosis spectrum symptoms, functioning, and suicidality (i.e., suicidal thoughts and behaviors) in youth seeking mental health care. Here, we present the neuroimaging and biosample component of the protocol. We also present feasibility and quality control metrics for the baseline sample collected thus far. METHODS: The current study includes youths (ages 11-24 years) who were referred to child and youth mental health services within a large tertiary care center in Toronto, Ontario, Canada, with target recruitment of 1500 participants. Participants were offered the opportunity to provide any or all of the following: 1) 1-hour magnetic resonance imaging (MRI) scan (electroencephalography if ineligible for or declined MRI), 2) blood sample for genomic and proteomic data (or saliva if blood collection was declined or not feasible) and urine sample, and 3) heart rate recording to assess respiratory sinus arrhythmia. RESULTS: Of the first 417 participants who consented to participate between May 4, 2021, and February 2, 2023, 412 agreed to participate in the imaging and biosample protocol. Of these, 334 completed imaging, 341 provided a biosample, 338 completed respiratory sinus arrhythmia, and 316 completed all 3. Following quality control, data usability was high (MRI: T1-weighted 99%, diffusion-weighted imaging 99%, arterial spin labeling 90%, resting-state functional MRI 95%, task functional MRI 90%; electroencephalography: 83%; respiratory sinus arrhythmia: 99%). CONCLUSIONS: The high consent rates, good completion rates, and high data usability reported here demonstrate the feasibility of collecting and using brain imaging and biosamples in a large clinical cohort of youths seeking mental health care.
Asunto(s)
Proteómica , Trastornos Psicóticos , Niño , Humanos , Adolescente , Estudios de Cohortes , Neuroimagen , EncéfaloRESUMEN
BACKGROUND: Mismatch negativity reductions are among the most reliable biomarkers for schizophrenia and have been associated with increased risk for conversion to psychosis in individuals who are at clinical high risk for psychosis (CHR-P). Here, we adopted a computational approach to develop a mechanistic model of mismatch negativity reductions in CHR-P individuals and patients early in the course of schizophrenia. METHODS: Electroencephalography was recorded in 38 CHR-P individuals (15 converters), 19 patients early in the course of schizophrenia (≤5 years), and 44 healthy control participants during three different auditory oddball mismatch negativity paradigms including 10% duration, frequency, or double deviants, respectively. We modeled sensory learning with the hierarchical Gaussian filter and extracted precision-weighted prediction error trajectories from the model to assess how the expression of hierarchical prediction errors modulated electroencephalography amplitudes over sensor space and time. RESULTS: Both low-level sensory and high-level volatility precision-weighted prediction errors were altered in CHR-P individuals and patients early in the course of schizophrenia compared with healthy control participants. Moreover, low-level precision-weighted prediction errors were significantly different in CHR-P individuals who later converted to psychosis compared with nonconverters. CONCLUSIONS: Our results implicate altered processing of hierarchical prediction errors as a computational mechanism in early psychosis consistent with predictive coding accounts of psychosis. This computational model seems to capture pathophysiological mechanisms that are relevant to early psychosis and the risk for future psychosis in CHR-P individuals and may serve as predictive biomarkers and mechanistic targets for the development of novel treatments.
Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Electroencefalografía , BiomarcadoresRESUMEN
Suicide is a pressing public health issue, with over 700,000 individuals dying each year. Ketamine has emerged as a promising treatment for suicidal thoughts and behaviors (STBs), yet the complex mechanisms underlying ketamine's anti-suicidal effect are not fully understood. Computational psychiatry provides a promising framework for exploring the dynamic interactions underlying suicidality and ketamine's therapeutic action, offering insight into potential biomarkers, treatment targets, and the underlying mechanisms of both. This paper provides an overview of current computational theories of suicidality and ketamine's mechanism of action, and discusses various computational modeling approaches that attempt to explain ketamine's anti-suicidal effect. More specifically, the therapeutic potential of ketamine is explored in the context of the mismatch negativity and the predictive coding framework, by considering neurocircuits involved in learning and decision-making, and investigating altered connectivity strengths and receptor densities targeted by ketamine. Theory-driven computational models offer a promising approach to integrate existing knowledge of suicidality and ketamine, and for the extraction of model-derived mechanistic parameters that can be used to identify patient subgroups and personalized treatment approaches. Future computational studies on ketamine's mechanism of action should optimize task design and modeling approaches to ensure parameter reliability, and external factors such as set and setting, as well as psychedelic-assisted therapy should be evaluated for their additional therapeutic value.
RESUMEN
BACKGROUND AND OBJECTIVE: Prediction of survival in patients diagnosed with a brain tumour is challenging because of heterogeneous tumour behaviours and treatment response. Advances in machine learning have led to the development of clinical prognostic models, but due to the lack of model interpretability, integration into clinical practice is almost non-existent. In this retrospective study, we compare five classification models with varying degrees of interpretability for the prediction of brain tumour survival greater than one year following diagnosis. METHODS: 1028 patients aged ≥16 years with a brain tumour diagnosis between April 2012 and April 2020 were included in our study. Three intrinsically interpretable 'glass box' classifiers (Bayesian Rule Lists [BRL], Explainable Boosting Machine [EBM], and Logistic Regression [LR]), and two 'black box' classifiers (Random Forest [RF] and Support Vector Machine [SVM]) were trained on electronic patients records for the prediction of one-year survival. All models were evaluated using balanced accuracy (BAC), F1-score, sensitivity, specificity, and receiver operating characteristics. Black box model interpretability and misclassified predictions were quantified using SHapley Additive exPlanations (SHAP) values and model feature importance was evaluated by clinical experts. RESULTS: The RF model achieved the highest BAC of 78.9%, closely followed by SVM (77.7%), LR (77.5%) and EBM (77.1%). Across all models, age, diagnosis (tumour type), functional features, and first treatment were top contributors to the prediction of one year survival. We used EBM and SHAP to explain model misclassifications and investigated the role of feature interactions in prognosis. CONCLUSION: Interpretable models are a natural choice for the domain of predictive medicine. Intrinsically interpretable models, such as EBMs, may provide an advantage over traditional clinical assessment of brain tumour prognosis by weighting potential risk factors and their interactions that may be unknown to clinicians. An agreement between model predictions and clinical knowledge is essential for establishing trust in the models decision making process, as well as trust that the model will make accurate predictions when applied to new data.
Asunto(s)
Neoplasias Encefálicas , Humanos , Teorema de Bayes , Estudios Retrospectivos , Neoplasias Encefálicas/diagnóstico , Aprendizaje Automático , EncéfaloRESUMEN
Reductions in the auditory mismatch negativity (MMN) have been well-demonstrated in schizophrenia rendering it a promising biomarker for understanding the emergence of psychosis. According to the predictive coding theory of psychosis, MMN impairments may reflect disturbances in hierarchical information processing driven by maladaptive precision-weighted prediction errors (pwPEs) and enhanced belief updating. We applied a hierarchical Bayesian model of learning to single-trial EEG data from an auditory oddball paradigm in 31 help-seeking antipsychotic-naive high-risk individuals and 23 healthy controls to understand the computational mechanisms underlying the auditory MMN. We found that low-level sensory and high-level volatility pwPE expression correlated with EEG amplitudes, coinciding with the timing of the MMN. Furthermore, we found that prodromal positive symptom severity was associated with increased expression of sensory pwPEs and higher-level belief uncertainty. Our findings provide support for the role of pwPEs in auditory MMN generation, and suggest that increased sensory pwPEs driven by changes in belief uncertainty may render the environment seemingly unpredictable. This may predispose high-risk individuals to delusion-like ideation to explain this experience. These results highlight the value of computational models for understanding the pathophysiological mechanisms of psychosis.
RESUMEN
Major depressive disorder is a heterogeneous diagnostic category with multiple available treatments. With the goal of optimizing treatment selection, researchers are developing computational models that attempt to predict treatment response based on various pretreatment measures. In this paper, we review studies that use brain activity data to predict treatment response. Our aim is to highlight and clarify important methodological differences between various studies that relate to the incorporation of domain knowledge, specifically within two approaches delineated as data-driven and theory-driven. We argue that theory-driven generative modeling, which explicitly models information processing in the brain and thus can capture disease mechanisms, is a promising emerging approach that is only beginning to be utilized in treatment response prediction. The predictors extracted via such models could improve interpretability, which is critical for clinical decision-making. We also identify several methodological limitations across the reviewed studies and provide suggestions for addressing them. Namely, we consider problems with dichotomizing treatment outcomes, the importance of investigating more than one treatment in a given study for differential treatment response predictions, the need for a patient-centered approach for defining treatment outcomes, and finally, the use of internal and external validation methods for improving model generalizability.
Individuals with major depressive disorder (MDD) vary in their response to available treatments, rendering treatment selection a challenging task. In this paper, we review studies applying computational models for predicting treatment response in MDD based on measures of brain activity. We discuss methodological differences across studies, focusing on how they incorporate existing knowledge about MDD and how that affects interpretability of model predictions. In this context, we argue that theory-driven generative modeling, which explicitly models information processing in the brain and thus can capture disease mechanisms, is a promising emerging approach for treatment response prediction. Finally, we identify several other important limitations that are holding back the translation of these tools into clinical practice.