Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Earths Future ; 10(4): e2021EF002526, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35860748

RESUMEN

Mitigation of greenhouse gas emissions from agriculture requires an understanding of spatial-temporal dynamics of nitrous oxide (N2O) emissions. Process-based models can quantify N2O emissions from agricultural soils but have rarely been applied to regions with highly diverse agriculture. In this study, a process-based biogeochemical model, DeNitrification-DeComposition (DNDC), was applied to quantify spatial-temporal dynamics of direct N2O emissions from California cropland employing a wide range of cropping systems. DNDC simulated direct N2O emissions from nitrogen (N) inputs through applications of synthetic fertilizers and crop residues during 2000-2015 by linking the model with a spatial-temporal differentiated database containing data on weather, crop areas, soil properties, and management. Simulated direct N2O emissions ranged from 3,830 to 7,875 tonnes N2O-N yr-1, representing 0.73%-1.21% of the N inputs. N2O emission rates were higher for hay and field crops and lower for orchard and vineyard. State cropland total N2O emissions showed a decreasing trend primarily driven by reductions of cropland area and N inputs, the trend toward growing more orchard, and changes in irrigation. Annual direct N2O emissions declined by 47% from 2000 to 2015. Simulations showed N2O emission variations could be explained not only by cropland area and N fertilizer inputs but also climate, soil properties, and management besides N fertilization. The detailed spatial-temporal emission dynamics and driving factors provide knowledge toward effective N2O mitigation and highlight the importance of coupling process-based models with high-resolution data for characterizing the spatial-temporal variability of N2O emissions in regions with diverse croplands.

2.
Environ Sci Technol ; 53(6): 2961-2970, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30821440

RESUMEN

Rapid increase in atmospheric methane (CH4) mixing ratios over the past century is attributable to the intensification of human activities. Information on spatially explicit source contributions is needed to develop efficient and cost-effective CH4 emission reduction and mitigation strategies to addresses near-term climate change. This study collected long-term ambient CH4 measurements at Mount Wilson Observatory (MWO) in Los Angeles, California, to estimate the annual CH4 emissions from the portion of Los Angeles County that is within the South Coast Air Basin (SCLA). The measurement-based CH4 emission estimates for SCLA ranged from 3.95 to 4.89 million metric tons (MMT) carbon dioxide equivalent (CO2e) per year between 2012 and 2016. Source apportionment of CH4, CO, CO2, and volatile organic compounds (VOCs) measurements were used to evaluate source categories that contributed to ambient CH4 mixing ratio enhancements (ΔCH4) at SCLA between 2014 and 2016. Results suggested ΔCH4 contributions of 56-79% from natural gas sources, 7-31% from landfills, and 4-15% from transportation sources. The SCLA-specific CH4 emission estimate made using a research grade gridded CH4 emission inventory suggested contributions of 47% from natural gas sources and 50% from landfills. Subsequent airborne measurements determined that CH4 emissions from two major CH4 sources in SCLA were significantly smaller in magnitude than previously thought. This study highlights the importance of studying the variabilities of CH4 emissions across California for policy makers and stakeholders alike.


Asunto(s)
Contaminantes Atmosféricos , Metano , Monitoreo del Ambiente , Los Angeles , Gas Natural
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA