Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nano Lett ; 23(17): 7815-7824, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37586706

RESUMEN

Stem cells exhibit prominent clusters controlling the transcription of genes into RNA. These clusters form by a phase-separation mechanism, and their size and shape are controlled via an amphiphilic effect of transcribed genes. Here, we construct amphiphile-nanomotifs purely from DNA, and we achieve similar size and shape control for phase-separated droplets formed from fully synthetic, self-interacting DNA-nanomotifs. Increasing amphiphile concentrations induce rounding of droplets, prevent droplet fusion, and, at high concentrations, cause full dispersal of droplets. Super-resolution microscopy data obtained from zebrafish embryo stem cells reveal a comparable transition for transcriptional clusters with increasing transcription levels. Brownian dynamics and lattice simulations further confirm that the addition of amphiphilic particles is sufficient to explain the observed changes in shape and size. Our work reproduces key aspects of transcriptional cluster formation in biological cells using relatively simple DNA sequence-programmable nanostructures, opening novel ways to control the mesoscopic organization of synthetic nanomaterials.


Asunto(s)
Nanoestructuras , Pez Cebra , Animales , Núcleo Celular , Nanoestructuras/química , ADN/química
2.
Small ; 19(13): e2202711, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35971190

RESUMEN

The bottom-up construction of an artificial cell requires the realization of synthetic cell division. Significant progress has been made toward reliable compartment division, yet mechanisms to segregate the DNA-encoded informational content are still in their infancy. Herein, droplets of DNA Y-motifs are formed by liquid-liquid phase separation. DNA droplet segregation is obtained by cleaving the linking component between two populations of DNA Y-motifs. In addition to enzymatic cleavage, photolabile sites are introduced for spatio-temporally controlled DNA segregation in bulk as well as in cell-sized water-in-oil droplets and giant unilamellar lipid vesicles (GUVs). Notably, the segregation process is slower in confinement than in bulk. The ionic strength of the solution and the nucleobase sequences are employed to regulate the segregation dynamics. The experimental results are corroborated in a lattice-based theoretical model which mimics the interactions between the DNA Y-motif populations. Altogether, engineered DNA droplets, reconstituted in GUVs, can represent a strategy toward a DNA segregation module within bottom-up assembled synthetic cells.


Asunto(s)
Células Artificiales , Liposomas Unilamelares , Agua , Modelos Teóricos
3.
Phys Rev E ; 100(3-1): 032137, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31639892

RESUMEN

We add extreme driving to the Kob-Andersen kinetically constrained lattice-gas model in order to mimic the effect of gravity on dense granular systems. For low particle densities, the current that develops in the system agrees at arbitrary field intensity with a mean-field theory. At intermediate densities, spatial correlations give rise to nonmonotonic dependence of the current on field intensity. At higher densities, the current ultimately vanishes at a finite, field-dependent density. We supplement the study of this bulk behavior with an investigation of the current through a narrow hole. There, lateral flow decreases the local density in front of the hole. Remarkably, the current through the hole quantitatively agrees with a theoretical prediction based on the bulk current at the measured local density.

4.
Biochim Biophys Acta Gen Subj ; 1863(10): 1547-1559, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31136784

RESUMEN

Pantothenate is the metabolic precursor of Coenzyme A, an indispensable cofactor for many fundamental cellular processes. In this study, we show that many bacterial species have acquired multiple copies of pantothenate biosynthesis pathway genes via horizontal and vertical gene transfer events. Some bacterial species were also found to lack panE and panD genes, and depended on alternative enzymes/metabolic sources for pantothenate production. To shed light on the factors responsible for such dynamic evolutionary selections, the structural and functional characteristics of P. aeruginosa ketopantoate reductase (KPR), an enzyme that catalyzes the rate-limiting step and also the most duplicated, was investigated. A comparative analysis of apo and NADP+ bound crystal structures of P. aeruginosa KPR with orthologs, revealed that the residues involved in the interaction with specific phosphate moiety of NADP+ are relatively less conserved, suggesting dynamic evolutionary trajectories in KPRs for redox cofactor selection. Our structural and biochemical data also show that the specific conformational changes mediated by NADPH binding facilitate the cooperative binding of ketopantoate. From drastically reduced catalytic activity for NADH catalyzed the reaction with significantly higher KM of ketopantoate, it appears that the binding of ketopantoate is allosterically regulated to confer redox cofactor specificity. Altogether, our results, in compliance with earlier studies, not only depict the role of lateral gene transfer events in many bacterial species for enhancing pantothenate production but also highlight the possible role of redox cofactor balance in the regulation of pantothenate biosynthesis pathways.


Asunto(s)
Duplicación de Gen , Transferencia de Gen Horizontal , Genoma , Ácido Pantoténico/biosíntesis , Regulación Alostérica , Catálisis , Cristalografía por Rayos X , Dosificación de Gen , Genes Bacterianos , Oxidación-Reducción , Encuestas y Cuestionarios
5.
J Chem Phys ; 150(14): 144508, 2019 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-30981244

RESUMEN

We analyze the dynamics of an active tracer particle embedded in a thermal lattice gas. All particles are subject to exclusion up to third nearest neighbors on the square lattice, which leads to slow dynamics at high densities. For the case with no rotational diffusion of the tracer, we derive an analytical expression for the resulting drift velocity v of the tracer in terms of non-equilibrium density correlations involving the tracer particle and its neighbors, which we verify using numerical simulations. We show that the properties of the passive system alone do not adequately describe even this simple system of a single non-rotating active tracer. For large activity and low density, we develop an approximation for v. For the case where the tracer undergoes rotational diffusion independent of its neighbors, we relate its diffusion coefficient to the thermal diffusion coefficient and v. Finally, we study dynamics where the rotation of the tracer is limited by the presence of neighboring particles. We find that the effect of this rotational locking may be quantitatively described in terms of a reduction in the rotation rate.

6.
Phys Rev E ; 93(6): 062124, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27415225

RESUMEN

We study symmetric simple exclusion processes (SSEP) on a ring in the presence of uniformly moving multiple defects or disorders-a generalization of the model we proposed earlier [Phys. Rev. E 89, 022138 (2014)PLEEE81539-375510.1103/PhysRevE.89.022138]. The defects move with uniform velocity and change the particle hopping rates locally. We explore the collective effects of the defects on the spatial structure and transport properties of the system. We also introduce an SSEP with ordered sequential (sitewise) update and elucidate the close connection with our model.

7.
Biochim Biophys Acta ; 1864(7): 773-86, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27041211

RESUMEN

BACKGROUND: Phosphopantetheine adenylyltransferase (PPAT) is a rate limiting enzyme which catalyzes the conversion of ATP and pantetheine to dephosphocoenzyme and pyrophosphate. The enzyme is allosteric in nature and regulated by Coenzyme A (CoA) through feedback inhibition. So far, several structures have been solved to decipher the catalytic mechanism of this enzyme. METHODS: To address catalytic and inhibitory mechanisms of PPAT, structural insights from single crystal X-ray diffraction method were primarily used, followed by biophysical and biochemical analysis. RESULTS: We have solved the structures of PPAT from Pseudomonas aeruginosa with its substrate analogue AMP-PNP and inhibitor CoA. For the first time, a co-crystal structure of PPAT with Acetyl-CoA (AcCoA) was determined. Enzymatic analysis was performed to decipher the catalytic, allosteric and inhibitory mechanisms involved in regulation of PPAT. Binding affinities of PPAT with its substrates and inhibitors were determined by SPR. CONCLUSION: Previous studies from Escherichia coli and Arabidopsis indicated the inhibitory activity of AcCoA. PPAT-AcCoA structure along with some biochemical methods established AcCoA as an inhibitor to PPAT and illustrated its inhibitory mechanism. Transition from catalytic to allosteric state involves formation of ternary complex. We have studied the structural features of the ternary complex of PPAT along with its product pyrophosphate and inhibitor CoA and validated it with other biophysical and biochemical methods. Extensive analysis of all these 3D structures indicates that changes in side chains R90 and D94 are responsible for transition between catalytic and allosteric inhibitory states. GENERAL SIGNIFICANCE: These enzymatic studies provide new insights into the allosteric mechanism of PPAT.


Asunto(s)
Nucleotidiltransferasas/química , Pseudomonas aeruginosa/enzimología , Sitio Alostérico , Biocatálisis , Modelos Moleculares , Nucleotidiltransferasas/antagonistas & inhibidores , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
8.
Artículo en Inglés | MEDLINE | ID: mdl-25353453

RESUMEN

We study a system of interacting particles in a periodically moving external potential, within the simplest possible description of paradigmatic symmetric exclusion process on a ring. The model describes diffusion of hardcore particles where the diffusion dynamics is locally modified at a uniformly moving defect site, mimicking the effect of the periodically moving external potential. The model, though simple, exhibits remarkably rich features in particle transport, such as polarity reversal and double peaks in particle current upon variation of defect velocity and particle density. By tuning these variables, the most efficient transport can be achieved in either direction along the ring. These features can be understood in terms of a traveling density wave propagating in the system. Our results could be experimentally tested, e.g., in a system of colloidal particles driven by a moving optical tweezer.

9.
PLoS One ; 8(10): e75028, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24124464

RESUMEN

Type Three Secretion (T3S) ATPases are involved in delivery of virulent factors from bacteria to their hosts (through injectisome) in an energy (ATP) dependent manner during pathogenesis. The activities of these ATPases are tightly controlled by their specific regulators. In Yersinia enterocolitica, YsaN was predicted as a putative ATPase of the Ysa-Ysp Type Three Secretion System (T3SS) based on sequence similarity with other T3S ATPases. However detailed study and characterization of YsaN and its regulation remains largely obscure. Here, in this study, we have successfully cloned, over-expressed, purified and characterized the molecular properties of YsaN from Yersinia enterocolitica. YsaN acts as a Mg(2+) dependent ATPase and exists in solution as higher order oligomer (dodecamer). The ATPase activity of oligomeric YsaN is several fold higher than the monomeric form. Furthermore, by employing in silico studies we have identified the existence of a negative regulator of YsaN--a hypothetical protein YE3555 (termed 'YsaL'). To verify the functionality of YsaL, we have evaluated the biochemical and biophysical properties of YsaL. Purified YsaL is dimeric in solution and strongly associates with YsaN to form a stable heterotrimeric YsaL-YsaN complex (stoichiometry--2∶1). The N terminal 6-20 residues of YsaN are invariably required for stable YsaL-YsaN complex formation. YsaL inhibited the ATPase activity of YsaN with a maximum inhibition at the molar ratio 2∶1 (YsaL: YsaN). In short, our studies provide an insight into the presence of YsaN ATPase in Yersinia enterocolitica and its regulator YsaL. Our studies also correlate the functionality of one of the existing protein interaction networks that possibly is indispensable for the energy dependent process of Ysa-Ysp T3SS in pathogenic Yersinia enterocolitica.


Asunto(s)
Proteínas Bacterianas/metabolismo , Yersinia enterocolitica/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Yersinia enterocolitica/genética
10.
Protein J ; 31(6): 487-98, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22648693

RESUMEN

YspC is an annotated translocator of Yersinia secretion apparatus-Yersinia secretion protein type three secretion system of Yersinia enterocolitica, it forms an 1:1 complex with its cognate chaperone SycB. Unlike other translocators, YspC is highly soluble inspite of having a transmembrane region. Size exclusion chromatography shows that YspC exists predominantly in a monomeric form. Multiple sequence alignment and ConSurf (a web based bioinformatic tool) analysis confirm its significant deviation from the closest class of minor translocators. YspC also possesses a tertiary structure signal seen from near UV CD, further confirming its unique nature amongst the groups of translocators. Far UV CD depicts that YspC is predominantly an α-helical protein; however, its secondary structure alters in the YspC-SycB complex. Thermal denaturation curve predicts a cooperative melting behaviour for YspC which is altered in the YspC-SycB complex. Furthermore, trypsinolysis data confirms a different digestion pattern for YspC in isolation, when compared to the complex form with SycB. From the Forsters resonance energy transfer analysis, it can be predicted that the two tetratricopeptide repeat regions of SycB are masked while it forms a complex with YspC and this is further confirmed by the interaction studies of YspC with two truncated forms of SycB. YspC interacted with ∆SycB1₋114 and ∆SycB36₋114 (possessing only the two TPR regions). However, the complexes formed between YspC and truncated forms of SycB have altered physiological states.


Asunto(s)
Proteínas Bacterianas/química , Sistemas de Secreción Bacterianos , Proteínas de Transporte de Membrana/química , Chaperonas Moleculares/química , Yersinia enterocolitica , Secuencia de Aminoácidos , Proteínas Bacterianas/aislamiento & purificación , Cromatografía de Afinidad , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Transporte de Membrana/aislamiento & purificación , Modelos Moleculares , Complejos Multiproteicos/química , Filogenia , Unión Proteica , Desnaturalización Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteolisis , Temperatura de Transición
11.
Protein J ; 31(1): 93-107, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22170450

RESUMEN

In Yersinia enterocolitica biovar 1B, a genome encoded TTSS designated as Ysa-Ysp system is used for virulence. SycB is an annotated chaperone to this system. SycB is soluble in presence of translocator YspC. SycB and its truncated form (∆SycB((1-114))) exist as dimers. YspC forms a 1:1 complex with SycB. Homology model of SycB shows a flexible N-terminal may be required for solubility and dimerization; and concave core formed by antiparallel helices of TPRs. Far UV CD spectra confirm that SycB is predominantly alpha helical. Near UV CD spectra show that SycB has tertiary structure at pH 7.2 (native folded protein), which disappears at pH 5 (molten globule) and SycB releases YspC at pH 5. SycB has a cooperative melting behavior. At pH 7.2, SycB shows solvent accessible hydrophobic patches. Concave core in the model exhibits ANS binding within FRET distance of tyrosines in the TPR, allowing a range of interaction of SycB with its ligand.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Expresión Génica , Chaperonas Moleculares/aislamiento & purificación , Chaperonas Moleculares/metabolismo , Yersinia enterocolitica/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos , Dimerización , Regulación Bacteriana de la Expresión Génica , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Secundaria de Proteína , Alineación de Secuencia , Yersinia enterocolitica/química , Yersinia enterocolitica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA