Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
iScience ; 27(5): 109679, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38655197

RESUMEN

Epilepsy affects millions globally with a significant portion exhibiting pharmacoresistance. Abnormal neuronal activity elevates brain lactate levels, which prompted the exploration of its receptor, the hydroxycarboxylic acid receptor 1 (HCAR1) known to downmodulate neuronal activity in physiological conditions. This study revealed that HCAR1-deficient mice (HCAR1-KO) exhibited lowered seizure thresholds, and increased severity and duration compared to wild-type mice. Hippocampal and whole-brain electrographic seizure analyses revealed increased seizure severity in HCAR1-KO mice, supported by time-frequency analysis. The absence of HCAR1 led to uncontrolled inter-ictal activity in acute hippocampal slices, replicated by lactate dehydrogenase A inhibition indicating that the activation of HCAR1 is closely associated with glycolytic output. However, synthetic HCAR1 agonist administration in an in vivo epilepsy model did not modulate seizures, likely due to endogenous lactate competition. These findings underscore the crucial roles of lactate and HCAR1 in regulating circuit excitability to prevent unregulated neuronal activity and terminate epileptic events.

2.
Methods Cell Biol ; 177: 197-211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37451767

RESUMEN

The dysfunction of mitochondria is linked with many diseases. In the nervous system, evidence of their implication in neurodegenerative disease is growing. Mitochondria health is assessed by their impact on cellular metabolism but alterations in their morphologies and locations in the cells can also be markers of dysfunctions. Light microscopy techniques allow us to look at mitochondria in vivo in cells or tissue. But in the case of the nervous system, in order to assess the precise location of mitochondria in different cell types and neuronal compartments (cell bodies, dendrites or axons), electron microscopy is required. While the percentage of volume occupied by mitochondria can be assessed on 2D images, alterations in length, branching, and interactions with other organelles require three-dimensional (3D) segmentation of mitochondria in volumes imaged at ultrastructural level. Nowadays three-dimensional volume electron microscopy (vEM) imaging techniques such as serial block face scanning electron microscopy (SBF-SEM) enable us to image 3D volumes of tissue at ultrastructural level and can be done routinely. Segmentation of all the neuropil is also successfully achieved at a large scale in the nervous system. Here, we show a workflow based on open access resources, which allows us to image, segment, and analyze mitochondria in 3D volumes of regions of interest in the mouse brain. Taking advantage of recent developments, e.g., pre-trained models for mitochondria, we speed up the reconstruction and analysis. We also critically assess the impact on the results of the different reconstruction methods chosen and the level of manual corrections invested.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Enfermedades Neurodegenerativas , Animales , Ratones , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Electrónica de Volumen , Microscopía Electrónica de Rastreo , Imagenología Tridimensional/métodos , Mitocondrias , Encéfalo/diagnóstico por imagen
3.
Alzheimers Res Ther ; 15(1): 8, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624525

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by altered cellular metabolism in the brain. Several of these alterations have been found to be exacerbated in females, known to be disproportionately affected by AD. We aimed to unravel metabolic alterations in AD at the metabolic pathway level and evaluate whether they are sex-specific through integrative metabolomic, lipidomic, and proteomic analysis of mouse brain tissue. METHODS: We analyzed male and female triple-transgenic mouse whole brain tissue by untargeted mass spectrometry-based methods to obtain a molecular signature consisting of polar metabolite, complex lipid, and protein data. These data were analyzed using multi-omics factor analysis. Pathway-level alterations were identified through joint pathway enrichment analysis or by separately evaluating lipid ontology and known proteins related to lipid metabolism. RESULTS: Our analysis revealed significant AD-associated and in part sex-specific alterations across the molecular signature. Sex-dependent alterations were identified in GABA synthesis, arginine biosynthesis, and in alanine, aspartate, and glutamate metabolism. AD-associated alterations involving lipids were also found in the fatty acid elongation pathway and lysophospholipid metabolism, with a significant sex-specific effect for the latter. CONCLUSIONS: Through multi-omics analysis, we report AD-associated and sex-specific metabolic alterations in the AD brain involving lysophospholipid and amino acid metabolism. These findings contribute to the characterization of the AD phenotype at the molecular level while considering the effect of sex, an overlooked yet determinant metabolic variable.


Asunto(s)
Enfermedad de Alzheimer , Femenino , Masculino , Animales , Ratones , Enfermedad de Alzheimer/genética , Multiómica , Proteómica , Encéfalo , Lisofosfolípidos , Ratones Transgénicos
4.
Glia ; 71(4): 957-973, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36537556

RESUMEN

Alzheimer's disease (AD) is becoming increasingly prevalent worldwide. It represents one of the greatest medical challenges as no pharmacologic treatments are available to prevent disease progression. Astrocytes play crucial functions within neuronal circuits by providing metabolic and functional support, regulating interstitial solute composition, and modulating synaptic transmission. In addition to these physiological functions, growing evidence points to an essential role of astrocytes in neurodegenerative diseases like AD. Early-stage AD is associated with hypometabolism and oxidative stress. Contrary to neurons that are vulnerable to oxidative stress, astrocytes are particularly resistant to mitochondrial dysfunction and are therefore more resilient cells. In our study, we leveraged astrocytic mitochondrial uncoupling and examined neuronal function in the 3xTg AD mouse model. We overexpressed the mitochondrial uncoupling protein 4 (UCP4), which has been shown to improve neuronal survival in vitro. We found that this treatment efficiently prevented alterations of hippocampal metabolite levels observed in AD mice, along with hippocampal atrophy and reduction of basal dendrite arborization of subicular neurons. This approach also averted aberrant neuronal excitability observed in AD subicular neurons and preserved episodic-like memory in AD mice assessed in a spatial recognition task. These findings show that targeting astrocytes and their mitochondria is an effective strategy to prevent the decline of neurons facing AD-related stress at the early stages of the disease.


Asunto(s)
Enfermedad de Alzheimer , Mitocondrias , Proteínas Desacopladoras Mitocondriales , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones Transgénicos , Mitocondrias/metabolismo , Proteínas Desacopladoras Mitocondriales/genética , Proteínas Desacopladoras Mitocondriales/metabolismo
5.
Metabolites ; 12(5)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35629969

RESUMEN

Lactate can protect against damage caused by acute brain injuries both in rodents and in human patients. Besides its role as a metabolic support and alleged preferred neuronal fuel in stressful situations, an additional signaling mechanism mediated by the hydroxycarboxylic acid receptor 1 (HCAR1) was proposed to account for lactate's beneficial effects. However, the administration of HCAR1 agonists to mice subjected to middle cerebral artery occlusion (MCAO) at reperfusion did not appear to exert any relevant protective effect. To further evaluate the involvement of HCAR1 in the protection against ischemic damage, we looked at the effect of HCAR1 absence. We subjected wild-type and HCAR1 KO mice to transient MCAO followed by treatment with either vehicle or lactate. In the absence of HCAR1, the ischemic damage inflicted by MCAO was less pronounced, with smaller lesions and a better behavioral outcome than in wild-type mice. The lower susceptibility of HCAR1 KO mice to ischemic injury suggests that lactate-mediated protection is not achieved or enhanced by HCAR1 activation, but rather attributable to its metabolic effects or related to other signaling pathways. Additionally, in light of these results, we would disregard HCAR1 activation as an interesting therapeutic strategy for stroke patients.

6.
J Cereb Blood Flow Metab ; 42(9): 1650-1665, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35240875

RESUMEN

Lactate can be used by neurons as an energy substrate to support their activity. Evidence suggests that lactate also acts on a metabotropic receptor called HCAR1, first described in the adipose tissue. Whether HCAR1 also modulates neuronal circuits remains unclear. In this study, using qRT-PCR, we show that HCAR1 is present in the human brain of epileptic patients who underwent resective surgery. In brain slices from these patients, pharmacological HCAR1 activation using a non-metabolized agonist decreased the frequency of both spontaneous neuronal Ca2+ spiking and excitatory post-synaptic currents (sEPSCs). In mouse brains, we found HCAR1 expression in different regions using a fluorescent reporter mouse line and in situ hybridization. In the dentate gyrus, HCAR1 is mainly present in mossy cells, key players in the hippocampal excitatory circuitry and known to be involved in temporal lobe epilepsy. By using whole-cell patch clamp recordings in mouse and rat slices, we found that HCAR1 activation causes a decrease in excitability, sEPSCs, and miniature EPSCs frequency of granule cells, the main output of mossy cells. Overall, we propose that lactate can be considered a neuromodulator decreasing synaptic activity in human and rodent brains, which makes HCAR1 an attractive target for the treatment of epilepsy.


Asunto(s)
Giro Dentado , Epilepsia , Neuronas , Receptores Acoplados a Proteínas G , Animales , Encéfalo , Giro Dentado/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Humanos , Ácido Láctico , Ratones , Neuronas/fisiología , Ratas , Receptores Acoplados a Proteínas G/metabolismo
7.
Biosensors (Basel) ; 12(3)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35323413

RESUMEN

The status of lactate has evolved from being considered a waste product of cellular metabolism to a useful metabolic substrate and, more recently, to a signaling molecule. The fluctuations of lactate levels within biological tissues, in particular in the interstitial space, are crucial to assess with high spatial and temporal resolution, and this is best achieved using cellular imaging approaches. In this study, we evaluated the suitability of the lactate receptor, hydroxycarboxylic acid receptor 1 (HCAR1, formerly named GPR81), as a basis for the development of a genetically encoded fluorescent lactate biosensor. We used a biosensor strategy that was successfully applied to molecules such as dopamine, serotonin, and norepinephrine, based on their respective G-protein-coupled receptors. In this study, a set of intensiometric sensors was constructed and expressed in living cells. They showed selective expression at the plasma membrane and responded to physiological concentrations of lactate. However, these sensors lost the original ability of HCAR1 to selectively respond to lactate versus other related small carboxylic acid molecules. Therefore, while representing a promising building block for a lactate biosensor, HCAR1 was found to be sensitive to perturbations of its structure, affecting its ability to distinguish between related carboxylic molecules.


Asunto(s)
Técnicas Biosensibles , Ácido Láctico , Ácido Láctico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
8.
J Neurochem ; 159(2): 378-388, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33829502

RESUMEN

Levels of nicotinamide adenine dinucleotide (NAD+) are known to decline with age and have been associated with impaired mitochondrial function leading to neurodegeneration, a key facet of Alzheimer's disease (AD). NAD+synthesis is sustained via tryptophan-kynurenine (Trp-Kyn) pathway as de novo synthesis route, and salvage pathways dependent on the availability of nicotinic acid and nicotinamide. While being currently investigated as a multifactorial disease with a strong metabolic component, AD remains without curative treatment and important sex differences were reported in relation to disease onset and progression. The aim of this study was to reveal the potential deregulation of NAD+metabolism in AD with the direct analysis of NAD+precursors in the mouse brain tissue (wild type (WT) versus triple transgenic (3xTg) AD), using a sex-balanced design. To this end, we developed a quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, which allowed for the measurement of the full spectrum of NAD+precursors and intermediates in all three pathways. In brain tissue of mice with developed AD symptoms, a decrease in kynurenine (Kyn) versus increase in kynurenic acid (KA) levels were observed in both sexes with a significantly higher increment of KA in males. These alterations in Trp-Kyn pathway might be a consequence of neuroinflammation and a compensatory production of neuroprotective kynurenic acid. In the NAD+ salvage pathway, significantly lower levels of nicotinamide mononucleotide (NMN) were measured in the AD brain of males and females. Depletion of NMN implies the deregulation of salvage pathway critical for maintaining optimal NAD+ levels and mitochondrial and neuronal function.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Cromatografía Líquida de Alta Presión/métodos , NAD/metabolismo , Espectrometría de Masas en Tándem/métodos , Animales , Encefalitis/metabolismo , Femenino , Humanos , Ácido Quinurénico/metabolismo , Quinurenina/metabolismo , Masculino , Metaboloma , Ratones , Ratones Transgénicos , Neuroprotección , Mononucleótido de Nicotinamida/metabolismo , Caracteres Sexuales
9.
Nat Neurosci ; 24(4): 529-541, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33589833

RESUMEN

Oxytocin (OT) orchestrates social and emotional behaviors through modulation of neural circuits. In the central amygdala, the release of OT modulates inhibitory circuits and, thereby, suppresses fear responses and decreases anxiety levels. Using astrocyte-specific gain and loss of function and pharmacological approaches, we demonstrate that a morphologically distinct subpopulation of astrocytes expresses OT receptors and mediates anxiolytic and positive reinforcement effects of OT in the central amygdala of mice and rats. The involvement of astrocytes in OT signaling challenges the long-held dogma that OT acts exclusively on neurons and highlights astrocytes as essential components for modulation of emotional states under normal and chronic pain conditions.


Asunto(s)
Astrocitos/metabolismo , Núcleo Amigdalino Central/metabolismo , Emociones/fisiología , Neuronas/metabolismo , Oxitocina/metabolismo , Animales , Astrocitos/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Núcleo Amigdalino Central/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Oxitocina/farmacología , Ratas , Ratas Wistar , Receptores de Oxitocina/metabolismo
10.
J Vis Exp ; (157)2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32225164

RESUMEN

Axon degeneration is a shared feature in neurodegenerative disease and when nervous systems are challenged by mechanical or chemical forces. However, our understanding of the molecular mechanisms underlying axon degeneration remains limited. Injury-induced axon degeneration serves as a simple model to study how severed axons execute their own disassembly (axon death). Over recent years, an evolutionarily conserved axon death signaling cascade has been identified from flies to mammals, which is required for the separated axon to degenerate after injury. Conversely, attenuated axon death signaling results in morphological and functional preservation of severed axons and their synapses. Here, we present three simple and recently developed protocols that allow for the observation of axonal morphology, or axonal and synaptic function of severed axons that have been cut-off from the neuronal cell body, in the fruit fly Drosophila. Morphology can be observed in the wing, where a partial injury results in axon death side-by-side of uninjured control axons within the same nerve bundle. Alternatively, axonal morphology can also be observed in the brain, where the whole nerve bundle undergoes axon death triggered by antennal ablation. Functional preservation of severed axons and their synapses can be assessed by a simple optogenetic approach coupled with a post-synaptic grooming behavior. We present examples using a highwire loss-of-function mutation and by over-expressing dnmnat, both capable of delaying axon death for weeks to months. Importantly, these protocols can be used beyond injury; they facilitate the characterization of neuronal maintenance factors, axonal transport, and axonal mitochondria.


Asunto(s)
Axones/fisiología , Drosophila melanogaster/fisiología , Sinapsis/fisiología , Animales , Mutación , Enfermedades Neurodegenerativas/metabolismo , Neuronas/fisiología , Optogenética , Transducción de Señal , Alas de Animales/anatomía & histología , Alas de Animales/fisiología
11.
J Neurosci ; 39(23): 4422-4433, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-30926749

RESUMEN

The discovery of a G-protein-coupled receptor for lactate named hydroxycarboxylic acid receptor 1 (HCAR1) in neurons has pointed to additional nonmetabolic effects of lactate for regulating neuronal network activity. In this study, we characterized the intracellular pathways engaged by HCAR1 activation, using mouse primary cortical neurons from wild-type (WT) and HCAR1 knock-out (KO) mice from both sexes. Using whole-cell patch clamp, we found that the activation of HCAR1 with 3-chloro-5-hydroxybenzoic acid (3Cl-HBA) decreased miniature EPSC frequency, increased paired-pulse ratio, decreased firing frequency, and modulated membrane intrinsic properties. Using fast calcium imaging, we show that HCAR1 agonists 3,5-dihydroxybenzoic acid, 3Cl-HBA, and lactate decreased by 40% spontaneous calcium spiking activity of primary cortical neurons from WT but not from HCAR1 KO mice. Notably, in neurons lacking HCAR1, the basal activity was increased compared with WT. HCAR1 mediates its effect in neurons through a Giα-protein. We observed that the adenylyl cyclase-cAMP-protein kinase A axis is involved in HCAR1 downmodulation of neuronal activity. We found that HCAR1 interacts with adenosine A1, GABAB, and α2A-adrenergic receptors, through a mechanism involving both its Giα and Gißγ subunits, resulting in a complex modulation of neuronal network activity. We conclude that HCAR1 activation in neurons causes a downmodulation of neuronal activity through presynaptic mechanisms and by reducing neuronal excitability. HCAR1 activation engages both Giα and Gißγ intracellular pathways to functionally interact with other Gi-coupled receptors for the fine tuning of neuronal activity.SIGNIFICANCE STATEMENT Expression of the lactate receptor hydroxycarboxylic acid receptor 1 (HCAR1) was recently described in neurons. Here, we describe the physiological role of this G-protein-coupled receptor (GPCR) and its activation in neurons, providing information on its expression and mechanism of action. We dissected out the intracellular pathway through which HCAR1 activation tunes down neuronal network activity. For the first time, we provide evidence for the functional cross talk of HCAR1 with other GPCRs, such as GABAB, adenosine A1- and α2A-adrenergic receptors. These results set HCAR1 as a new player for the regulation of neuronal network activity acting in concert with other established receptors. Thus, HCAR1 represents a novel therapeutic target for pathologies characterized by network hyperexcitability dysfunction, such as epilepsy.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/fisiología , Lactatos/metabolismo , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Receptores Acoplados a Proteínas G/fisiología , Potenciales de Acción , Animales , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , AMP Cíclico/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/fisiología , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Cultivo Primario de Células , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Sistemas de Mensajero Secundario/efectos de los fármacos
12.
Cell Rep ; 26(9): 2477-2493.e9, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30811995

RESUMEN

The role of brain cell-type-specific functions and profiles in pathological and non-pathological contexts is still poorly defined. Such cell-type-specific gene expression profiles in solid, adult tissues would benefit from approaches that avoid cellular stress during isolation. Here, we developed such an approach and identified highly selective transcriptomic signatures in adult mouse striatal direct and indirect spiny projection neurons, astrocytes, and microglia. Integrating transcriptomic and epigenetic data, we obtained a comprehensive model for cell-type-specific regulation of gene expression in the mouse striatum. A cross-analysis with transcriptomic and epigenomic data generated from mouse and human Huntington's disease (HD) brains shows that opposite epigenetic mechanisms govern the transcriptional regulation of striatal neurons and glial cells and may contribute to pathogenic and compensatory mechanisms. Overall, these data validate this less stressful method for the investigation of cellular specificity in the adult mouse brain and demonstrate the potential of integrative studies using multiple databases.


Asunto(s)
Encéfalo/metabolismo , Enfermedad de Huntington/genética , Animales , ADN/química , Epigénesis Genética , Perfilación de la Expresión Génica/métodos , Humanos , Enfermedad de Huntington/metabolismo , Captura por Microdisección con Láser/métodos , Masculino , Ratones , Ratones Transgénicos , MicroARNs/metabolismo , Conformación de Ácido Nucleico , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
13.
ACS Chem Neurosci ; 9(8): 2009-2015, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29741354

RESUMEN

Astrocytes clear glutamate and potassium, both of which are released into the extracellular space during neuronal activity. These processes are intimately linked with energy metabolism. Whereas astrocyte glutamate uptake causes cytosolic and mitochondrial acidification, extracellular potassium induces bicarbonate-dependent cellular alkalinization. This study aimed at quantifying the combined impact of glutamate and extracellular potassium on mitochondrial parameters of primary cultured astrocytes. Glutamate in 3 mM potassium caused a stronger acidification of mitochondria compared to cytosol. 15 mM potassium caused alkalinization that was stronger in the cytosol than in mitochondria. While the combined application of 15 mM potassium and glutamate led to a marked cytosolic alkalinization, pH only marginally increased in mitochondria. Thus, potassium and glutamate effects cannot be arithmetically summed, which also applies to their effects on mitochondrial potential and respiration. The data implies that, because of the nonlinear interaction between the effects of potassium and glutamate, astrocytic energy metabolism will be differentially regulated.


Asunto(s)
Astrocitos/metabolismo , Espacio Extracelular/metabolismo , Ácido Glutámico/metabolismo , Mitocondrias/metabolismo , Potasio/metabolismo , Animales , Astrocitos/citología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Citoplasma/metabolismo , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL , Microscopía Fluorescente , Oxígeno/metabolismo
14.
ACS Chem Neurosci ; 9(8): 1975-1985, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29847093

RESUMEN

To investigate the enormous complexity of the functional and pathological brain there are a number of possible experimental model systems to choose from. Depending on the research question choosing the appropriate model may not be a trivial task, and given the dynamic and intricate nature of an intact living brain several models might be needed to properly address certain questions. In this review, we aim to provide an overview of neural cell and tissue culture, reflecting on historic methodological milestones and providing a brief overview of the state-of-the-art. We additionally present an example of an effective model system pipeline, composed of dissociated mouse cultures, organotypics, acute mouse brain slices, and acute human brain slices, in that order. The sequential use of these four model systems allows a balance and progression from experimental control to human applicability, and provides a meta-model that can help validate basic research findings in a translational setting. We then conclude with a few remarks regarding the necessity of an integrated approach when performing translational and neuropharmacological studies.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Células Cultivadas , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Cultivo de Tejidos , Animales , Humanos , Modelos Biológicos , Organoides/efectos de los fármacos , Organoides/fisiología , Investigación Biomédica Traslacional
15.
Cereb Cortex ; 27(6): 3272-3283, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369311

RESUMEN

Glutamate and K+, both released during neuronal firing, need to be tightly regulated to ensure accurate synaptic transmission. Extracellular glutamate and K+ ([K+]o) are rapidly taken up by glutamate transporters and K+-transporters or channels, respectively. Glutamate transport includes the exchange of one glutamate, 3 Na+, and one proton, in exchange for one K+. This K+ efflux allows the glutamate binding site to reorient in the outwardly facing position and start a new transport cycle. Here, we demonstrate the sensitivity of the transport process to [K+]o changes. Increasing [K+]o over the physiological range had an immediate and reversible inhibitory action on glutamate transporters. This K+-dependent transporter inhibition was revealed using microspectrofluorimetry in primary astrocytes, and whole-cell patch-clamp in acute brain slices and HEK293 cells expressing glutamate transporters. Previous studies demonstrated that pharmacological inhibition of glutamate transporters decreases neuronal transmission via extrasynaptic glutamate spillover and subsequent activation of metabotropic glutamate receptors (mGluRs). Here, we demonstrate that increasing [K+]o also causes a decrease in neuronal mEPSC frequency, which is prevented by group II mGluR inhibition. These findings highlight a novel, previously unreported physiological negative feedback mechanism in which [K+]o elevations inhibit glutamate transporters, unveiling a new mechanism for activity-dependent modulation of synaptic activity.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Líquido Extracelular/metabolismo , Neuronas/fisiología , Potasio/metabolismo , Transmisión Sináptica/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Sistema de Transporte de Aminoácidos X-AG/genética , Aminoácidos/farmacología , Animales , Animales Recién Nacidos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacología , Ácido Aspártico/envenenamiento , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Corteza Cerebral/citología , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Ácido Glutámico/farmacología , Células HEK293 , Humanos , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Potasio/farmacología , Transmisión Sináptica/efectos de los fármacos , Xantenos/farmacología
16.
Sci Adv ; 3(2): e1602026, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28246641

RESUMEN

Rodents sleep in bouts lasting minutes; humans sleep for hours. What are the universal needs served by sleep given such variability? In sleeping mice and humans, through monitoring neural and cardiac activity (combined with assessment of arousability and overnight memory consolidation, respectively), we find a previously unrecognized hallmark of sleep that balances two fundamental yet opposing needs: to maintain sensory reactivity to the environment while promoting recovery and memory consolidation. Coordinated 0.02-Hz oscillations of the sleep spindle band, hippocampal ripple activity, and heart rate sequentially divide non-rapid eye movement (non-REM) sleep into offline phases and phases of high susceptibility to external stimulation. A noise stimulus chosen such that sleeping mice woke up or slept through at comparable rates revealed that offline periods correspond to raising, whereas fragility periods correspond to declining portions of the 0.02-Hz oscillation in spindle activity. Oscillations were present throughout non-REM sleep in mice, yet confined to light non-REM sleep (stage 2) in humans. In both species, the 0.02-Hz oscillation predominated over posterior cortex. The strength of the 0.02-Hz oscillation predicted superior memory recall after sleep in a declarative memory task in humans. These oscillations point to a conserved function of mammalian non-REM sleep that cycles between environmental alertness and internal memory processing in 20- to 25-s intervals. Perturbed 0.02-Hz oscillations may cause memory impairment and ill-timed arousals in sleep disorders.


Asunto(s)
Relojes Biológicos , Ondas Encefálicas , Corazón/fisiopatología , Hipocampo/fisiopatología , Memoria , Trastornos del Sueño-Vigilia/fisiopatología , Sueño REM , Animales , Humanos , Masculino , Ratones
17.
Neurophotonics ; 4(1): 015002, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28217712

RESUMEN

Neuronal activity results in the release of [Formula: see text] into the extracellular space (ECS). Classically, measurements of extracellular [Formula: see text] ([Formula: see text]) are carried out using [Formula: see text]-sensitive microelectrodes, which provide a single point measurement with undefined spatial resolution. An imaging approach would enable the spatiotemporal mapping of [Formula: see text]. Here, we report on the design and characterization of a fluorescence imaging-based [Formula: see text]-sensitive nanosensor for the ECS based on dendrimer nanotechnology. Spectral characterization, sensitivity, and selectivity of the nanosensor were assessed by spectrofluorimetry, as well as in both wide-field and two-photon microscopy settings, demonstrating the nanosensor efficacy over the physiologically relevant ion concentration range. Spatial and temporal kinetics of the nanosensor responses were assessed using a localized iontophoretic [Formula: see text] application on a two-photon imaging setup. Using acute mouse brain slices, we demonstrate that the nanosensor is retained in the ECS for extended periods of time. In addition, we present a ratiometric version of the nanosensor, validate its sensitivity in brain tissue in response to elicited neuronal activity and correlate the responses to the extracellular field potential. Together, this study demonstrates the efficacy of the [Formula: see text]-sensitive nanosensor approach and validates the possibility of creating multimodal nanosensors.

18.
Glia ; 64(10): 1667-76, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27027636

RESUMEN

The Na(+) gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na(+) -dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na(+) load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na(+) extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na(+) following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na(+) as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na(+) and the metabolic machinery. GLIA 2016;64:1667-1676.


Asunto(s)
Astrocitos/fisiología , Metabolismo Energético/fisiología , Transducción de Señal/fisiología , Sodio/metabolismo , Animales
19.
PLoS One ; 9(10): e109243, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25275375

RESUMEN

Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes. We evaluated the impact of these K+ ion movements on [K+]i in primary mouse astrocytes by microspectrofluorimetry. We established a new noninvasive and reliable approach to monitor and quantify [K+]i using the recently developed K+ sensitive fluorescent indicator Asante Potassium Green-1 (APG-1). An in situ calibration procedure enabled us to estimate the resting [K+]i at 133±1 mM. We first investigated the dependency of [K+]i levels on [K+]o. We found that [K+]i followed [K+]o changes nearly proportionally in the range 3-10 mM, which is consistent with previously reported microelectrode measurements of intracellular K+ concentration changes in astrocytes. We then found that glutamate superfusion caused a reversible drop of [K+]i that depended on the glutamate concentration with an apparent EC50 of 11.1±1.4 µM, corresponding to the affinity of astrocyte glutamate transporters. The amplitude of the [K+]i drop was found to be 2.3±0.1 mM for 200 µM glutamate applications. Overall, this study shows that the fluorescent K+ indicator APG-1 is a powerful new tool for addressing important questions regarding fine [K+]i regulation with excellent spatial resolution.


Asunto(s)
Astrocitos/citología , Imagen Óptica , Potasio/análisis , Potasio/metabolismo , Animales , Astrocitos/metabolismo , Cationes Monovalentes/análisis , Cationes Monovalentes/metabolismo , Células Cultivadas , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/metabolismo , Ácido Glutámico/metabolismo , Ratones , Ratones Endogámicos C57BL , Espectrometría de Fluorescencia
20.
J Biol Chem ; 289(45): 31014-28, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25237189

RESUMEN

Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.


Asunto(s)
Astrocitos/citología , Regulación de la Expresión Génica , Proteínas de Transporte de Membrana/fisiología , Mitocondrias/metabolismo , Neuronas/citología , Adenosina Trifosfato/química , Animales , Dióxido de Carbono/química , Supervivencia Celular , Técnicas de Cocultivo , Fluoresceínas/química , Glucosa/metabolismo , Glucólisis , Células HEK293 , Humanos , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Lactatos/química , Ratones , Proteínas Desacopladoras Mitocondriales , Fosforilación Oxidativa , Consumo de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA