Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Pathogens ; 11(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35890043

RESUMEN

Animal lentiviruses (LVs) have been proven to have the capacity to cross the species barrier, to adapt in the new hosts, and to increase their pathogenesis, therefore leading to the emergence of threatening diseases. However, their potential for widespread diffusion is limited by restrictive cellular factors that block viral replication in the cells of many species. In previous studies, we demonstrated that the restriction of CAEV infection of sheep choroid plexus cells was due to aberrant post-translation cleavage of the CAEV Env gp170 precursor. Later, we showed that the lack of specific receptor(s) for caprine encephalitis arthritis virus (CAEV) on the surface of human cells was the only barrier to their infection. Here, we examined whether small ruminant (SR) cells can support the replication of primate LVs. Three sheep and goat cell lines were inoculated with cell-free HIV-1 and SIVmac viral stocks or transfected with infectious molecular clone DNAs of these viruses. The two recombinant lentiviral clones contained the green fluorescent protein (GFP) reporter sequence. Infection was detected by GFP expression in target cells, and the infectious virus produced and released in the culture medium of treated cells was detected using the indicator TZM-bl cell line. Pseudotyped HIV-GFP and SIV-GFP with vesicular stomatitis virus G glycoprotein (VSV-G) allowed the cell receptors to be overcome for virus entry to further evaluate the viral replication/restriction in SR cells. As expected, neither HIV nor SIV viruses infected any of the SR cells. In contrast, the transfection of plasmid DNAs of the infectious molecular clones of both viruses in SR cells produced high titers of infectious viruses for human indicators, but not SR cell lines. Surprisingly, SR cells inoculated with HIV-GFP/VSV-G, but not SIV-GFP/VSV-G, expressed the GFP and produced a virus that efficiently infected the human indictor, but not the SR cells. Collectively, these data provide a demonstration of the lack of replication of the SIVmac genome in SR cells, while, in contrast, there was no restriction on the replication of the IV-1 genome in these cells. However, because of the lack of functional receptors to SIVmac and HIV-1 at the surface of SR cells, there is specific lentiviral entry.

2.
Front Immunol ; 13: 848571, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464449

RESUMEN

W614A-3S peptide is a modified 3S motif of the HIV-gp41 (mutation W614A). We previously detected the presence of natural neutralizing antibodies directed against W614A-3S peptide (NAbs) in long-term non-progressor HIV+ patients. Here, we compared the efficacy of W614A-3S peptide formulated in either squalene emulsion (SQE) or in aluminum hydroxide (Alum) in inducing broadly-NAbs (bNAbs). Rabbit and mouse models were used to screen the induction of bNAbs following 4 immunizations. SQE was more efficient than Alum formulation in inducing W614A-3S-specific bNAbs with up to 67%-93% of HIV strains neutralized. We then analyzed the quality of peptide-specific murine B cells by single-cell gene expression by quantitative reverse transcription-PCR and single-cell V(D)J sequencing. We found more frequent germinal center B cells in SQE than in Alum, albeit with a different gene expression profile. The V(D)J sequencing of W614A-3S-specific BCR showed significant differences in BCR sequences and validates the dichotomy between adjuvant formulations. All sixteen BCR sequences which were cloned were specific of peptide. Adjuvant formulations of W614A-3S-peptide-conjugated immunogen impact the quantity and quality of B cell immune responses at both the gene expression level and BCR sequence.


Asunto(s)
Anticuerpos Neutralizantes , Infecciones por VIH , Adyuvantes Inmunológicos , Hidróxido de Aluminio , Animales , Anticuerpos ampliamente neutralizantes , Emulsiones , Humanos , Ratones , Péptidos , Conejos , Escualeno , Vacunas Conjugadas , Vacunas de Subunidad
3.
Vaccines (Basel) ; 7(3)2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31480779

RESUMEN

HIV-1 is responsible for a global pandemic of 35 million people and continues to spread at a rate of >2 million new infections/year. It is widely acknowledged that a protective vaccine would be the most effective means to reduce HIV-1 spread and ultimately eliminate the pandemic, whereas a therapeutic vaccine might help to mitigate the clinical course of the disease and to contribute to virus eradication strategies. However, despite more than 30 years of research, we do not have a vaccine capable of protecting against HIV-1 infection or impacting on disease progression. This, in part, denotes the challenge of identifying immunogens and vaccine modalities with a reduced risk of failure in late stage development. However, progress has been made in epitope identification for the induction of broadly neutralizing antibodies. Thus, peptide-based vaccination has become one of the challenges of this decade. While some researchers reconstitute envelope protein conformation and stabilization to conserve the epitope targeted by neutralizing antibodies, others have developed strategies based on peptide-carrier vaccines with a similar goal. Here, we will review the major peptide-carrier based approaches in the vaccine field and their application and recent development in the HIV-1 field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA