Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
bioRxiv ; 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38260662

RESUMEN

The red nucleus is a large brainstem structure that coordinates limb movement for locomotion in quadrupedal animals (Basile et al., 2021). The humans red nucleus has a different pattern of anatomical connectivity compared to quadrupeds, suggesting a unique purpose (Hatschek, 1907). Previously the function of the human red nucleus remained unclear at least partly due to methodological limitations with brainstem functional neuroimaging (Sclocco et al., 2018). Here, we used our most advanced resting-state functional connectivity (RSFC) based precision functional mapping (PFM) in highly sampled individuals (n = 5) and large group-averaged datasets (combined N ~ 45,000), to precisely examine red nucleus functional connectivity. Notably, red nucleus functional connectivity to motor-effector networks (somatomotor hand, foot, and mouth) was minimal. Instead, red nucleus functional connectivity along the central sulcus was specific to regions of the recently discovered somato-cognitive action network (SCAN; (Gordon et al., 2023)). Outside of primary motor cortex, red nucleus connectivity was strongest to the cingulo-opercular (CON) and salience networks, involved in action/cognitive control (Dosenbach et al., 2007; Newbold et al., 2021) and reward/motivated behavior (Seeley, 2019), respectively. Functional connectivity to these two networks was organized into discrete dorsal-medial and ventral-lateral zones. Red nucleus functional connectivity to the thalamus recapitulated known structural connectivity of the dento-rubral thalamic tract (DRTT) and could prove clinically useful in functionally targeting the ventral intermediate (VIM) nucleus. In total, our results indicate that far from being a 'motor' structure, the red nucleus is better understood as a brainstem nucleus for implementing goal-directed behavior, integrating behavioral valence and action plans.

2.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37987000

RESUMEN

Motor adaptation in cortico-striato-thalamo-cortical loops has been studied mainly in animals using invasive electrophysiology. Here, we leverage functional neuroimaging in humans to study motor circuit plasticity in the human subcortex. We employed an experimental paradigm that combined two weeks of upper-extremity immobilization with daily resting-state and motor task fMRI before, during, and after the casting period. We previously showed that limb disuse leads to decreased functional connectivity (FC) of the contralateral somatomotor cortex (SM1) with the ipsilateral somatomotor cortex, increased FC with the cingulo-opercular network (CON) as well as the emergence of high amplitude, fMRI signal pulses localized in the contralateral SM1, supplementary motor area and the cerebellum. From our prior observations, it remains unclear whether the disuse plasticity affects the thalamus and striatum. We extended our analysis to include these subcortical regions and found that both exhibit strengthened cortical FC and spontaneous fMRI signal pulses induced by limb disuse. The dorsal posterior putamen and the central thalamus, mainly CM, VLP and VIM nuclei, showed disuse pulses and FC changes that lined up with fmri task activations from the Human connectome project motor system localizer, acquired before casting for each participant. Our findings provide a novel understanding of the role of the cortico-striato-thalamo-cortical loops in human motor plasticity and a potential link with the physiology of sleep regulation. Additionally, similarities with FC observation from Parkinson Disease (PD) questions a pathophysiological link with limb disuse.

3.
bioRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38077010

RESUMEN

Functional MRI (fMRI) data are severely distorted by magnetic field (B0) inhomogeneities which currently must be corrected using separately acquired field map data. However, changes in the head position of a scanning participant across fMRI frames can cause changes in the B0 field, preventing accurate correction of geometric distortions. Additionally, field maps can be corrupted by movement during their acquisition, preventing distortion correction altogether. In this study, we use phase information from multi-echo (ME) fMRI data to dynamically sample distortion due to fluctuating B0 field inhomogeneity across frames by acquiring multiple echoes during a single EPI readout. Our distortion correction approach, MEDIC (Multi-Echo DIstortion Correction), accurately estimates B0 related distortions for each frame of multi-echo fMRI data. Here, we demonstrate that MEDIC's framewise distortion correction produces improved alignment to anatomy and decreases the impact of head motion on resting-state functional connectivity (RSFC) maps, in higher motion data, when compared to the prior gold standard approach (i.e., TOPUP). Enhanced framewise distortion correction with MEDIC, without the requirement for field map collection, furthers the advantage of multi-echo over single-echo fMRI.

4.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873065

RESUMEN

The Cingulo-Opercular network (CON) is an executive network of the human brain that regulates actions. CON is composed of many widely distributed cortical regions that are involved in top-down control over both lower-level (i.e., motor) and higher-level (i.e., cognitive) functions, as well as in processing of painful stimuli. Given the topographical and functional heterogeneity of the CON, we investigated whether subnetworks within the CON support separable aspects of action control. Using precision functional mapping (PFM) in 15 participants with > 5 hours of resting state functional connectivity (RSFC) and task data, we identified three anatomically and functionally distinct CON subnetworks within each individual. These three distinct subnetworks were linked to Decisions, Actions, and Feedback (including pain processing), respectively, in convergence with a meta-analytic task database. These Decision, Action and Feedback subnetworks represent pathways by which the brain establishes top-down goals, transforms those goals into actions, implemented as movements, and processes critical action feedback such as pain.

5.
Nature ; 617(7960): 351-359, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37076628

RESUMEN

Motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down the precentral gyrus from foot to face representations1,2, despite evidence for concentric functional zones3 and maps of complex actions4. Here, using precision functional magnetic resonance imaging (fMRI) methods, we find that the classic homunculus is interrupted by regions with distinct connectivity, structure and function, alternating with effector-specific (foot, hand and mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, as well as to the cingulo-opercular network (CON), critical for action5 and physiological control6, arousal7, errors8 and pain9. This interdigitation of action control-linked and motor effector regions was verified in the three largest fMRI datasets. Macaque and pediatric (newborn, infant and child) precision fMRI suggested cross-species homologues and developmental precursors of the inter-effector system. A battery of motor and action fMRI tasks documented concentric effector somatotopies, separated by the CON-linked inter-effector regions. The inter-effectors lacked movement specificity and co-activated during action planning (coordination of hands and feet) and axial body movement (such as of the abdomen or eyebrows). These results, together with previous studies demonstrating stimulation-evoked complex actions4 and connectivity to internal organs10 such as the adrenal medulla, suggest that M1 is punctuated by a system for whole-body action planning, the somato-cognitive action network (SCAN). In M1, two parallel systems intertwine, forming an integrate-isolate pattern: effector-specific regions (foot, hand and mouth) for isolating fine motor control and the SCAN for integrating goals, physiology and body movement.


Asunto(s)
Mapeo Encefálico , Cognición , Corteza Motora , Mapeo Encefálico/métodos , Mano/fisiología , Imagen por Resonancia Magnética , Corteza Motora/anatomía & histología , Corteza Motora/fisiología , Humanos , Recién Nacido , Lactante , Niño , Animales , Macaca/anatomía & histología , Macaca/fisiología , Pie/fisiología , Boca/fisiología , Conjuntos de Datos como Asunto
6.
Biol Psychiatry ; 94(1): 29-39, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36925414

RESUMEN

BACKGROUND: Neuroimaging studies of functional connectivity (FC) in autism have been hampered by small sample sizes and inconsistent findings with regard to whether connectivity is increased or decreased in individuals with autism, whether these alterations affect focal systems or reflect a brain-wide pattern, and whether these are age and/or sex dependent. METHODS: The study included resting-state functional magnetic resonance imaging and clinical data from the EU-AIMS LEAP (European Autism Interventions Longitudinal European Autism Project) and the ABIDE (Autism Brain Imaging Data Exchange) 1 and 2 initiatives of 1824 (796 with autism) participants with an age range of 5-58 years. Between-group differences in FC were assessed, and associations between FC and clinical symptom ratings were investigated through canonical correlation analysis. RESULTS: Autism was associated with a brainwide pattern of hypo- and hyperconnectivity. Hypoconnectivity predominantly affected sensory and higher-order attentional networks and correlated with social impairments, restrictive and repetitive behavior, and sensory processing. Hyperconnectivity was observed primarily between the default mode network and the rest of the brain and between cortical and subcortical systems. This pattern was strongly associated with social impairments and sensory processing. Interactions between diagnosis and age or sex were not statistically significant. CONCLUSIONS: The FC alterations observed, which primarily involve hypoconnectivity of primary sensory and attention networks and hyperconnectivity of the default mode network and subcortex with the rest of the brain, do not appear to be age or sex dependent and correlate with clinical dimensions of social difficulties, restrictive and repetitive behaviors, and alterations in sensory processing. These findings suggest that the observed connectivity alterations are stable, trait-like features of autism that are related to the main symptom domains of the condition.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Conectoma , Humanos , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Conectoma/métodos , Trastorno Autístico/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos
8.
Mol Autism ; 13(1): 53, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575450

RESUMEN

BACKGROUND: Autism spectrum disorder (autism) is a complex neurodevelopmental condition with pronounced behavioral, cognitive, and neural heterogeneities across individuals. Here, our goal was to characterize heterogeneity in autism by identifying patterns of neural diversity as reflected in BOLD fMRI in the way individuals with autism engage with a varied array of cognitive tasks. METHODS: All analyses were based on the EU-AIMS/AIMS-2-TRIALS multisite Longitudinal European Autism Project (LEAP) with participants with autism (n = 282) and typically developing (TD) controls (n = 221) between 6 and 30 years of age. We employed a novel task potency approach which combines the unique aspects of both resting state fMRI and task-fMRI to quantify task-induced variations in the functional connectome. Normative modelling was used to map atypicality of features on an individual basis with respect to their distribution in neurotypical control participants. We applied robust out-of-sample canonical correlation analysis (CCA) to relate connectome data to behavioral data. RESULTS: Deviation from the normative ranges of global functional connectivity was greater for individuals with autism compared to TD in each fMRI task paradigm (all tasks p < 0.001). The similarity across individuals of the deviation pattern was significantly increased in autistic relative to TD individuals (p < 0.002). The CCA identified significant and robust brain-behavior covariation between functional connectivity atypicality and autism-related behavioral features. CONCLUSIONS: Individuals with autism engage with tasks in a globally atypical way, but the particular spatial pattern of this atypicality is nevertheless similar across tasks. Atypicalities in the tasks originate mostly from prefrontal cortex and default mode network regions, but also speech and auditory networks. We show how sophisticated modeling methods such as task potency and normative modeling can be used toward unravelling complex heterogeneous conditions like autism.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Conectoma , Humanos , Trastorno Autístico/diagnóstico por imagen , Conectoma/métodos , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo , Corteza Prefrontal , Imagen por Resonancia Magnética/métodos
10.
Addict Biol ; 27(2): e13137, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35229951

RESUMEN

Patients with attention-deficit/hyperactivity disorder (ADHD) often develop early onset substance use disorder (SUD) and show poor treatment outcomes. Both disorders show similar reward-processing alterations, but it is unclear whether these are associated with familial vulnerability to SUD. Our aim was to investigate effects of family history of SUD (FH) on reward processing in individuals with and without ADHD, without substance misuse. Behavioural and functional magnetic resonance imaging (fMRI) data from a modified monetary incentive delay task were compared between participants with and without FH (FH positive [FH+]: n = 76 and FH negative [FH-]: n = 69; 76 with ADHD, aged 16.74 ± 3.14, 82 males), while accounting for continuous ADHD scores. The main analysis showed distinct positive association between ADHD scores and reaction times during neutral versus reward condition. ADHD scores were also positively associated with anticipatory responses of dorsolateral prefrontal cortex, independent of FH. There were no main FH effects on brain activation. Yet, FH+ participants showed distinct neural alterations in ventrolateral prefrontal cortex (VLPFC), dependent on ADHD. This was driven by positive association between ADHD scores and VLPFC activation during reward outcome, only in FH+. Sensitivity analysis with stricter SUD index showed hyperactivation of anterior cingulate cortex for FH+, independent of ADHD, during reward anticipation. There were no FH or ADHD effects on activation of ventral striatum in any analysis. Findings suggest both FH and ADHD effects in circuits of reward and attention/memory during reward processing. Future studies should examine whether these relate to early substance use initiation in ADHD and explore the need for adjusted SUD prevention strategies.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastornos Relacionados con Sustancias , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Motivación , Recompensa , Trastornos Relacionados con Sustancias/diagnóstico por imagen
11.
Nature ; 603(7902): 654-660, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296861

RESUMEN

Magnetic resonance imaging (MRI) has transformed our understanding of the human brain through well-replicated mapping of abilities to specific structures (for example, lesion studies) and functions1-3 (for example, task functional MRI (fMRI)). Mental health research and care have yet to realize similar advances from MRI. A primary challenge has been replicating associations between inter-individual differences in brain structure or function and complex cognitive or mental health phenotypes (brain-wide association studies (BWAS)). Such BWAS have typically relied on sample sizes appropriate for classical brain mapping4 (the median neuroimaging study sample size is about 25), but potentially too small for capturing reproducible brain-behavioural phenotype associations5,6. Here we used three of the largest neuroimaging datasets currently available-with a total sample size of around 50,000 individuals-to quantify BWAS effect sizes and reproducibility as a function of sample size. BWAS associations were smaller than previously thought, resulting in statistically underpowered studies, inflated effect sizes and replication failures at typical sample sizes. As sample sizes grew into the thousands, replication rates began to improve and effect size inflation decreased. More robust BWAS effects were detected for functional MRI (versus structural), cognitive tests (versus mental health questionnaires) and multivariate methods (versus univariate). Smaller than expected brain-phenotype associations and variability across population subsamples can explain widespread BWAS replication failures. In contrast to non-BWAS approaches with larger effects (for example, lesions, interventions and within-person), BWAS reproducibility requires samples with thousands of individuals.


Asunto(s)
Mapeo Encefálico , Encéfalo , Imagen por Resonancia Magnética , Mapeo Encefálico/métodos , Cognición , Conjuntos de Datos como Asunto , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Fenotipo , Reproducibilidad de los Resultados
12.
Artículo en Inglés | MEDLINE | ID: mdl-33054990

RESUMEN

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by age-inappropriate levels of inattention and/or hyperactivity-impulsivity. ADHD has been related to differences in white matter (WM) microstructure. However, much remains unclear regarding the nature of these WM differences and which clinical aspects of ADHD they reflect. We systematically investigated whether fractional anisotropy (FA) is associated with current and/or lifetime categorical diagnosis, impairment in daily life, and continuous ADHD symptom measures. METHODS: Diffusion-weighted imaging data were obtained from 654 participants (322 unaffected, 258 affected, 74 subthreshold; 7-29 years of age). We applied automated global probabilistic tractography on 18 major WM pathways. Linear mixed-effects regression models were used to examine associations of clinical measures with overall brain and tract-specific FA. RESULTS: There were significant interactions of tract with all ADHD variables on FA. There were no significant associations of FA with current or lifetime diagnosis, nor with impairment. Lower FA in the right cingulum angular bundle was associated with higher hyperactivity-impulsivity symptom severity (pfamilywise error = .045). There were no significant effects for other tracts. CONCLUSIONS: This is the first time global probabilistic tractography has been applied to an ADHD dataset of this size. We found no evidence for altered FA in association with ADHD diagnosis. Our findings indicate that associations of FA with ADHD are not uniformly distributed across WM tracts. Continuous symptom measures of ADHD may be more sensitive to FA than diagnostic categories. The right cingulum angular bundle in particular may play a role in symptoms of hyperactivity and impulsivity.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Sustancia Blanca , Encéfalo , Imagen de Difusión Tensora/métodos , Humanos , Conducta Impulsiva
13.
Addict Biol ; 27(1): e13063, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34101312

RESUMEN

Patients with attention-deficit/hyperactivity disorder (ADHD) are often diagnosed with comorbid substance misuse (SM), which is associated with poor treatment efficacy. Although literature indicates similar inhibitory control deficits in both conditions, it is unclear whether SM in ADHD exaggerates pre-existing deficits, with additive or distinct impairments in patients. Our aim was to examine SM effects on inhibitory control in ADHD. Behavioural and functional magnetic resonance imaging (fMRI) data from a stop-signal task were compared across ADHD patients with and without SM (ADHD + SM and ADHD-only, respectively) and controls (n = 33/group; 79 males, mean age 18.02 ± 2.45). To limit substance use disorder (SUD) trait effects, groups were matched for parental SUD. Overall, we found worse performance for ADHD-only and/or ADHD + SM compared with controls but no difference between the ADHD groups. Moreover, the ADHD groups showed decreased frontostriatal and frontoparietal activity during successful and failed stop trials. There were no differences between the ADHD groups in superior frontal nodes, but there was more decreased activation in temporal/parietal nodes in ADHD-only compared with ADHD + SM. During go-trials, ADHD + SM showed decreased activation in inferior frontal nodes compared with ADHD-only and controls. Findings during response inhibition showed deficits in inhibition and attentional processes for ADHD patients with and without SM. Despite no evidence for SM effects during response inhibition, results during go-trials suggest distinct effects on nodes that are associated with several executive functions. Future studies should investigate whether distinct deficits in ADHD + SM relate to poor treatment results and can direct development of distinct ADHD treatment strategies for these patients.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Inhibición Psicológica , Trastornos Relacionados con Sustancias/fisiopatología , Adolescente , Adulto , Atención , Encéfalo/fisiopatología , Mapeo Encefálico , Función Ejecutiva , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Países Bajos , Pruebas Neuropsicológicas , Adulto Joven
14.
Transl Psychiatry ; 11(1): 159, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33750765

RESUMEN

Attention-deficit/hyperactivity disorder (ADHD) is associated with altered functioning in multiple cognitive domains and neural networks. This paper offers an overarching biological perspective across these. We applied a novel strategy that extracts functional connectivity modulations in the brain across one (Psingle), two (Pmix) or three (Pall) cognitive tasks and compared the pattern of modulations between participants with ADHD (n-89), unaffected siblings (n = 93) and controls (n = 84; total N = 266; age range = 8-27 years). Participants with ADHD had significantly fewer Pall connections (modulated regardless of task), but significantly more task-specific (Psingle) connectivity modulations than the other groups. The amplitude of these Psingle modulations was significantly higher in ADHD. Unaffected siblings showed a similar degree of Pall connectivity modulation as controls but a similar degree of Psingle connectivity modulation as ADHD probands. Pall connections were strongly reproducible at the individual level in controls, but showed marked heterogeneity in both participants with ADHD and unaffected siblings. The pattern of reduced task-generic and increased task-specific connectivity modulations in ADHD may be interpreted as reflecting a less efficient functional brain architecture due to a reduction in the ability to generalise processing pathways across multiple cognitive domains. The higher amplitude of unique task-specific connectivity modulations in ADHD may index a more "effortful" coping strategy. Unaffected siblings displayed a task connectivity profile in between that of controls and ADHD probands, supporting an endophenotype view. Our approach provides a new perspective on the core neural underpinnings of ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Niño , Endofenotipos , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas , Adulto Joven
15.
JCPP Adv ; 1(3)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35434717

RESUMEN

Background: Attention-deficit hyperactivity disorder (ADHD) is associated with white matter (WM) microstructure. Our objective was to investigate how WM microstructure is longitudinally related to symptom remission in adolescents and young adults with ADHD. Methods: We obtained diffusion-weighted imaging (DWI) data from 99 participants at two timepoints (mean age baseline: 16.91 years, mean age follow-up: 20.57 years). We used voxel-wise Tract-Based Spatial Statistics (TBSS) with permutation-based inference to investigate associations of inattention (IA) and hyperactivity-impulsivity (HI) symptom change with fractional anisotropy (FA) at baseline, follow-up, and change between time-points. Results: Remission of combined HI and IA symptoms was significantly associated with reduced FA at follow-up in the left superior longitudinal fasciculus and the left corticospinal tract (CST; P FWE = 0.038 and P FWE = 0.044, respectively), mainly driven by an association between HI remission and follow-up CST FA (P FWE = 0.049). There was no significant association of combined symptom decrease with FA at baseline or with changes in FA between the two assessments. Conclusions: In this longitudinal DWI study of ADHD using dimensional symptom scores, we show that greater symptom decrease is associated with lower follow-up FA in specific WM tracts. Altered FA thus may appear to follow, rather than precede, changes in symptom remission. Our findings indicate divergent WM developmental trajectories between individuals with persistent and remittent ADHD, and support the role of prefrontal and sensorimotor tracts in the remission of ADHD.

16.
Neuropsychopharmacology ; 46(3): 622-631, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33184474

RESUMEN

Attention-Deficit/Hyperactivity Disorder (ADHD) and Substance Use Disorder (SUD) often co-occur and are associated with treatment resistance. Both disorders are characterized by similar reward-processing deficits with decreased striatal responses to reward anticipation, though literature is inconsistent. It is unclear whether substance misuse exaggerates reward-processing deficits observed in ADHD. The aim of this study was to examine substance misuse effects on reward-processing in ADHD. Functional MRI data in a Monetary Incentive Delay (MID) task from a multi-site study were compared across ADHD groups with and without substance misuse (ADHD + SM and ADHD-only, respectively) and healthy controls (n = 40/group, 74 males and 46 females, aged 13.7-25.9 years). Substance misuse was defined as misuse of alcohol, nicotine, or drugs. Groups were matched with presence/absence of parental SUD to avoid interference with SUD trait effects. Compared to ADHD-only and controls, ADHD + SM showed hyperactivation in putamen during reward anticipation. Compared to controls, the ADHD groups showed hypoactivation in motor/sensory cortices and hyperactivation in frontal pole and OFC during reward outcome. ADHD + SM also showed hyperactivation in frontal pole during neutral outcome. Moreover, ADHD + SM patients showed higher callous-unemotional (CU) traits that were positively correlated with putamen responses to reward anticipation. Our results show distinct condition-independent neural activation profile for ADHD + SM compared to ADHD-only and controls. Effects of comorbid substance misuse and variability of its prevalence across ADHD studies might have contributed to inconsistencies in ADHD literature. Contrasted with findings for reward-processing in SUD literature, results potentially suggest distinct underlying mechanisms for SUD subgroups with different characteristics, like antisocial/psychopathic traits.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastornos Relacionados con Sustancias , Adolescente , Adulto , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Motivación , Recompensa , Trastornos Relacionados con Sustancias/diagnóstico por imagen , Adulto Joven
17.
Neuroimage ; 184: 632-645, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30261307

RESUMEN

When an individual engages in a task, the associated evoked activities build upon already ongoing activity, shaped by an underlying functional connectivity baseline (Fox et al., 2009; Smith et al., 2009; Tavor et al., 2016). Building on the idea that rest represents the brain's full functional repertoire, we here incorporate the idea that task-induced functional connectivity modulations ought to be task-specific with respect to their underlying resting state functional connectivity. Various metrics such as clustering coefficient or average path length have been proposed to index processing efficiency, typically from single fMRI session data. We introduce a framework incorporating task potency, which provides direct access to task-specificity by enabling direct comparison between task paradigms. In particular, to study functional connectivity modulations related to cognitive involvement in a task we define task potency as the amplitude of a connectivity modulation away from its baseline functional connectivity architecture as observed during a resting state acquisition. We demonstrate the use of our framework by comparing three tasks (visuo-spatial working memory, reward processing, and stop signal task) available within a large cohort. Using task potency, we demonstrate that cognitive operations are supported by a set of common within-network interactions, supplemented by connections between large-scale networks in order to solve a specific task.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Red Nerviosa/fisiología , Análisis y Desempeño de Tareas , Adolescente , Adulto , Niño , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Descanso/fisiología , Adulto Joven
18.
Dev Cogn Neurosci ; 33: 5-16, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29223425

RESUMEN

It is being hypothesised that the developing adolescent brain is increasingly enlisting long-range connectivity, allowing improved communication between spatially distant brain regions. The developmental trajectories of such maturational changes remain elusive. Here, we aim to study how the brain engages in multiple tasks (working memory, reward processing, and inhibition) at the network-level and evaluate how effects of age across these tasks are related to each other. We characterise how the brain departs from its functional baseline architecture towards task-induced functional connectivity modulations using a novel measure called task potency, allowing direct comparison between tasks by defining sensitivity to one or multiple tasks. By applying this method in a sample of healthy participants (N = 218) aged 8-30 years, we demonstrate maturational changes in task-dependent functional co-activation over and above baseline connectivity maturation. Our results provide evidence for task-specific maturational windows with different cognitive systems probed by different tasks displaying specific age-range dependencies of strongest developmental change. Our results highlight the use of task potency for modelling developmental trajectories and the impact of differential maturation across tasks. This enables better characterisation of cognitive processes disrupted in neurodevelopmental disorders and may explain the increased level of heterogeneity observed in adolescent population studies.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Memoria a Corto Plazo/fisiología , Adolescente , Adulto , Factores de Edad , Niño , Femenino , Humanos , Masculino , Adulto Joven
19.
Psychiatry Res Neuroimaging ; 255: 75-80, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27564545

RESUMEN

Callous-unemotional (CU) traits, i.e., unconcernedness and lack of prosocial feelings, may manifest in Conduct Disorder (CD), but also in Oppositional Defiant Disorder (ODD) and Attention Deficit Hyperactivity Disorder (ADHD). These disorders have been associated with aberrant reward processing, while the influence of CU traits is unclear. Using functional Magnetic Resonance Imaging (fMRI), we examined whether CU traits affect the neural circuit for reward. A Monetary Incentive Delay (MID) task was administered to 328 adolescents and young adults with varying levels of CU traits: 40 participants with ODD/CD plus ADHD, 101 participants with ADHD only, 84 siblings of probands with ADHD and 103 typically developing (TD) individuals. During reward anticipation, CU traits related negatively to medial prefrontal cortex (mPFC) activity, independent of ADHD symptoms and ODD/CD diagnosis. Our results indicate that CU traits are a valuable dimension for assessing the neural basis of reward processing.


Asunto(s)
Encéfalo/diagnóstico por imagen , Emociones/fisiología , Empatía/fisiología , Recompensa , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno por Déficit de Atención con Hiperactividad/psicología , Trastorno de la Conducta/diagnóstico por imagen , Trastorno de la Conducta/fisiopatología , Trastorno de la Conducta/psicología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA