Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Inorg Biochem ; 262: 112734, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39378762

RESUMEN

The multifaceted nature of the neurodegenerative diseases, as Alzheimer's disease (AD) and Parkinson's disease (PD) with several interconnected etiologies, and the absence of effective drugs, led herein to the development and study of a series of multi-target directed ligands (MTDLs). The developed RIV-IND hybrids, derived from the conjugation of an approved anti-AD drug, rivastigmine (RIV), with melatonin analogues, namely indole (IND) derivatives, revealed multifunctional properties, by associating the cholinesterase inhibition of the RIV drug with antioxidant activity, biometal (Cu(II), Zn(II), Fe(III)) chelation properties, inhibition of amyloid-ß (Aß) aggregation (self- and Cu-induced) and of monoamine oxidases (MAOs), as well as neuroprotection capacity in cell models of AD and PD. In particular, two hybrids with hydroxyl-substituted indoles (5a2 and 5a3) could be promising multifunctional compounds that inspire further development of novel anti-neurodegenerative drugs.

2.
J Med Chem ; 67(20): 18384-18399, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39374514

RESUMEN

A new library of non-nitrocatechol compounds (HetCAMs) was developed and their efficacy was compared to tolcapone, a standard COMT inhibitor for PD. Compound 9 emerged as the most potent inhibitor, showing selective inhibition of brain (IC50 = 24 nM) and liver (IC50 = 81 nM) MB-COMT over liver S-COMT (IC50 = 620 nM) isoforms. Although compound 9 presented higher IC50 values than tolcapone, it was more selective for brain MB-COMT than liver S-COMT. Unlike tolcapone, compound 9 is not a tight-binding inhibitor and is less cytotoxic to HepG2 and SK-N-SH cells. Additionally, compound 9 is predicted to cross the blood-brain barrier (BBB) by passive diffusion and chelate divalent metals like Fe(II) and Cu(II). The results demonstrate the potential of this rational drug design strategy for developing new CNS-active drug candidates, offering symptom relief via COMT inhibition that can provide a long-term, disease-modifying outcome (chelation of divalent metals) in PD.


Asunto(s)
Barrera Hematoencefálica , Inhibidores de Catecol O-Metiltransferasa , Catecol O-Metiltransferasa , Catecoles , Inhibidores de Catecol O-Metiltransferasa/farmacología , Inhibidores de Catecol O-Metiltransferasa/química , Inhibidores de Catecol O-Metiltransferasa/síntesis química , Inhibidores de Catecol O-Metiltransferasa/farmacocinética , Humanos , Barrera Hematoencefálica/metabolismo , Catecol O-Metiltransferasa/metabolismo , Catecoles/química , Catecoles/farmacología , Tolcapona , Relación Estructura-Actividad , Descubrimiento de Drogas , Benzofenonas/farmacología , Benzofenonas/química , Células Hep G2 , Animales , Encéfalo/metabolismo , Nitrofenoles/química , Nitrofenoles/farmacología , Nitrofenoles/metabolismo , Hígado/metabolismo
3.
bioRxiv ; 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39386654

RESUMEN

Brain vasculature is a complex and heterogeneous physiological structure that serves specialized roles in maintaining brain health and homeostasis. There is substantial interest in developing representative human models of the brain vasculature for drug screening and disease modeling applications. Many contemporary strategies have focused on culturing neurovascular cell types in hydrogels and microdevices, but it remains challenging to achieve anatomically relevant vascular structures that have physiologically similar function to their in vivo counterparts. Here, we present a strategy for isolating microvessels from cryopreserved human cortical tissue and culturing these vessels in a biomimetic gelatin-based hydrogel contained in a microfluidic device. We provide histological evidence of arteriole and capillary architectures within hydrogels, as well as anastomosis to the hydrogel edges allowing lumen perfusion. In capillaries, we demonstrate restricted diffusion of a 10 kDa dextran, indicating intact passive blood-brain barrier function. We anticipate this bona fide human brain vasculature-on-a-chip will be useful for various biotechnology applications.

4.
Cell Rep ; 43(11): 114874, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39423129

RESUMEN

Human neural organoid models have become an important tool for studying neurobiology. However, improving the representativeness of neural cell populations in such organoids remains a major effort. In this work, we compared Matrigel, a commercially available matrix, to a neural cadherin (N-cadherin) peptide-functionalized gelatin methacryloyl hydrogel (termed GelMA-Cad) for culturing cortical neural organoids. We determined that peptide presentation can tune cell fate and diversity in gelatin-based matrices during differentiation. Of particular note, cortical organoids cultured in GelMA-Cad hydrogels mapped more closely to human fetal populations and produced neurons with more spontaneous excitatory postsynaptic currents relative to Matrigel. These results provide compelling evidence that matrix-tethered signaling peptides can influence neural organoid differentiation, opening an avenue to control stem cell fate. Moreover, outcomes from this work showcase the technical utility of GelMA-Cad as a simple and defined hydrogel alternative to Matrigel for neural organoid culture.

5.
PLoS One ; 19(8): e0300830, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39190628

RESUMEN

Comparative mitogenomics and its evolutionary relationships within Bryconidae remains largely unexplored. To bridge this gap, this study assembled 15 mitogenomes from 11 Bryconidae species, including five newly sequenced. Salminus mitogenomes, exceeding 17,700 bp, exhibited the largest size, contrasting with a median size of 16,848 bp in the remaining species (Brycon and Chilobrycon). These mitogenomes encode 37 typical mitochondrial genes, including 13 protein-coding, 2 ribosomal RNA, and 22 transfer RNA genes, and exhibit the conserved gene arrangement found in most fish species. Phylogenetic relationships, based on the maximum-likelihood method, revealed that the trans-Andean species (found in northwestern South America) clustered into two main sister clades. One clade comprised the trans-Andean species from the Pacific slope, Brycon chagrensis and Chilobrycon deuterodon. The other clade grouped the trans-Andean species from the Magdalena-Cauca Basin Brycon moorei and Salminus affinis, with their respective cis-Andean congeners (found in eastern South America), with Brycon rubricauda as its sister clade. Since the current members of Brycon are split in three separated lineages, the systematic classification of Bryconidae requires further examination. This study provides novel insights into mitogenome characteristics and evolutionary pathways within Bryconidae, standing as crucial information for prospective phylogenetic and taxonomic studies, molecular ecology, and provides a valuable resource for environmental DNA applications.


Asunto(s)
Characiformes , Genoma Mitocondrial , Filogenia , Animales , Characiformes/genética , Characiformes/clasificación , ARN de Transferencia/genética , ARN Ribosómico/genética , Evolución Molecular , América del Sur
6.
Eur J Med Chem ; 277: 116723, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39163775

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) presents a pervasive global pandemic, affecting approximately 25 % of the world's population. This grave health issue not only demands urgent attention but also stands as a significant economic concern on a global scale. The genesis of NAFLD can be primarily attributed to unhealthy dietary habits and a sedentary lifestyle, albeit certain genetic factors have also been recorded to contribute to its occurrence. NAFLD is characterized by fat accumulation in more than 5 % of hepatocytes according to histological analysis, or >5.6 % of lipid volume fraction in total liver weight in patients. The pathophysiology of NAFLD/non-alcoholic steatohepatitis (NASH) is multifactorial and the mechanisms underlying the progression to advanced forms remain unclear, thereby representing a challenge to disease therapy. Despite the substantial efforts from the scientific community and the large number of pre-clinical and clinical trials performed so far, only one drug was approved by the Food and Drug Administration (FDA) to treat NAFLD/NASH specifically. This review provides an overview of available information concerning emerging molecular targets and drug candidates tested in clinical studies for the treatment of NAFLD/NASH. Improving our understanding of NAFLD pathophysiology and pharmacotherapy is crucial not only to explore new molecular targets, but also to potentiate drug discovery programs to develop new therapeutic strategies. This knowledge endeavours scientific efforts to reduce the time for achieving a specific and effective drug for NAFLD or NASH management and improve patients' quality of life.


Asunto(s)
Descubrimiento de Drogas , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Humanos , Animales
7.
J Xenobiot ; 14(2): 772-797, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38921653

RESUMEN

Substituted phenethylamines including 2C (2,5-dimethoxyphenethylamines) and NBOMe (N-(2-methoxybenzyl)phenethylamines) drugs are potent psychoactive substances with little to no knowledge available on their toxicity. In the present in vitro study, we explored the mechanisms underlying the neurotoxicity of six substituted phenethylamines: 2C-T-2, 2C-T-4, 2C-T-7 and their corresponding NBOMes. These drugs were synthesized and chemically characterized, and their cytotoxicity (0-1000 µM) was evaluated in differentiated SH-SY5Y cells and primary rat cortical cultures, by the NR uptake and MTT reduction assays. In differentiated SH-SY5Y cells, mitochondrial membrane potential, intracellular ATP and calcium levels, reactive oxygen species production, and intracellular total glutathione levels were also evaluated. All the tested drugs exhibited concentration-dependent cytotoxic effects towards differentiated SH-SY5Y cells and primary rat cortical cultures. The NBOMe drugs presented higher cytotoxicity than their counterparts, which correlates with the drug's lipophilicity. These cytotoxic effects were associated with mitochondrial dysfunction, evident through mitochondrial membrane depolarization and lowered intracellular ATP levels. Intracellular calcium imbalance was observed for 2C-T-7 and 25T7-NBOMe, implying a disrupted calcium regulation. Although reactive species levels remained unchanged, a reduction in intracellular total GSH content was observed. Overall, these findings contribute to a deeper understanding of these drugs, shedding light on the mechanisms underpinning their neurotoxicity.

8.
Pharmaceutics ; 16(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38931832

RESUMEN

Neurodegenerative diseases (NDs) are a set of progressive, chronic, and incurable diseases characterized by the gradual loss of neurons, culminating in the decline of cognitive and/or motor functions. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs and represent an enormous burden both in terms of human suffering and economic cost. The available therapies for AD and PD only provide symptomatic and palliative relief for a limited period and are unable to modify the diseases' progression. Over the last decades, research efforts have been focused on developing new pharmacological treatments for these NDs. However, to date, no breakthrough treatment has been discovered. Hence, the development of disease-modifying drugs able to halt or reverse the progression of NDs remains an unmet clinical need. This review summarizes the major hallmarks of AD and PD and the drugs available for pharmacological treatment. It also sheds light on potential directions that can be pursued to develop new, disease-modifying drugs to treat AD and PD, describing as representative examples some advances in the development of drug candidates targeting oxidative stress and adenosine A2A receptors.

9.
BMC Genomics ; 25(1): 304, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519886

RESUMEN

Fusarium, a member of the Ascomycota fungi, encompasses several pathogenic species significant to plants and animals. Some phytopathogenic species have received special attention due to their negative economic impact on the agricultural industry around the world. Traditionally, identification and taxonomic analysis of Fusarium have relied on morphological and phenotypic features, including the fungal host, leading to taxonomic conflicts that have been solved using molecular systematic technologies. In this work, we applied a phylogenomic approach that allowed us to resolve the evolutionary history of the species complexes of the genus and present evidence that supports the F. ventricosum species complex as the most basal lineage of the genus. Additionally, we present evidence that proposes modifications to the previous hypothesis of the evolutionary history of the F. staphyleae, F. newnesense, F. nisikadoi, F. oxysporum, and F. fujikuroi species complexes. Evolutionary analysis showed that the genome GC content tends to be lower in more modern lineages, in both, the whole-genome and core-genome coding DNA sequences. In contrast, genome size gain and losses are present during the evolution of the genus. Interestingly, core genome duplication events positively correlate with genome size. Evolutionary and genome conservation analysis supports the F3 hypothesis of Fusarium as a more compact and conserved group in terms of genome conservation. By contrast, outside of the F3 hypothesis, the most basal clades only share 8.8% of its genomic sequences with the F3 clade.


Asunto(s)
Fusarium , Fusarium/genética , Genoma Fúngico , Genómica , Tamaño del Genoma , Filogenia , Enfermedades de las Plantas/microbiología
10.
J Med Chem ; 67(5): 4170-4193, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38436571

RESUMEN

We report here the first dual inhibitors of brain carbonic anhydrases (CAs) and monoamine oxidase-B (MAO-B) for the management of Alzheimer's disease. Classical CA inhibitors (CAIs) such as methazolamide prevent amyloid-ß-peptide (Aß)-induced overproduction of reactive oxygen species (ROS) and mitochondrial dysfunction. MAO-B is also implicated in ROS production, cholinergic system disruption, and amyloid plaque formation. In this work, we combined a reversible MAO-B inhibitor of the coumarin and chromone type with benzenesulfonamide fragments as highly effective CAIs. A hit-to-lead optimization led to a significant set of derivatives showing potent low nanomolar inhibition of the target brain CAs (KIs in the range of 0.1-90.0 nM) and MAO-B (IC50 in the range of 6.7-32.6 nM). Computational studies were conducted to elucidate the structure-activity relationship and predict ADMET properties. The most effective multitarget compounds totally prevented Aß-related toxicity, reverted ROS formation, and restored the mitochondrial functionality in an SH-SY5Y cell model surpassing the efficacy of single-target drugs.


Asunto(s)
Enfermedad de Alzheimer , Anhidrasas Carbónicas , Enfermedades Mitocondriales , Neuroblastoma , Humanos , Monoaminooxidasa/metabolismo , Especies Reactivas de Oxígeno/farmacología , Péptidos beta-Amiloides/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Relación Estructura-Actividad , Estrés Oxidativo , Encéfalo/metabolismo
11.
Arch Pharm (Weinheim) ; 357(6): e2300525, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38412454

RESUMEN

Lewy body dementia (LBD) represents the second most common neurodegenerative dementia but is a quite underexplored therapeutic area. Nepflamapimod (1) is a brain-penetrant selective inhibitor of the alpha isoform of the mitogen-activated serine/threonine protein kinase (MAPK) p38α, recently repurposed for LBD due to its remarkable antineuroinflammatory properties. Neuroprotective propargylamines are another class of molecules with a therapeutical potential against LBD. Herein, we sought to combine the antineuroinflammatory core of 1 and the neuroprotective propargylamine moiety into a single molecule. Particularly, we inserted a propargylamine moiety in position 4 of the 2,6-dichlorophenyl ring of 1, generating neflamapimod-propargylamine hybrids 3 and 4. These hybrids were evaluated using several cell models, aiming to recapitulate the complexity of LBD pathology through different molecular mechanisms. The N-methyl-N-propargyl derivative 4 showed a nanomolar p38α-MAPK inhibitory activity (IC50 = 98.7 nM), which is only 2.6-fold lower compared to that of the parent compound 1, while displaying no hepato- and neurotoxicity up to 25 µM concentration. It also retained a similar immunomodulatory profile against the N9 microglial cell line. Gratifyingly, at 5 µM concentration, 4 demonstrated a neuroprotective effect against dexamethasone-induced reactive oxygen species production in neuronal cells that was higher than that of 1.


Asunto(s)
Indanos , Enfermedad por Cuerpos de Lewy , Fármacos Neuroprotectores , Humanos , Enfermedad por Cuerpos de Lewy/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/síntesis química , Indanos/farmacología , Indanos/química , Indanos/síntesis química , Animales , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga , Ratones
12.
J Med Case Rep ; 18(1): 24, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38243328

RESUMEN

BACKGROUND: Carcinosarcoma of the parotid gland is an extremely rare malignancy comprising of 0.04-0.16% of all salivary gland tumors. This is the first case of an adenoid cystic carcinoma with chondrosarcoma to the best of our knowledge. They consist of distinct carcinomatous and sarcomatous components and may arise de novo or from a preexisting pleomorphic adenoma. CASE PRESENTATION: Herein we present a case of an 80-year-old white female who presented with progressively increasing left facial swelling over 6 weeks. Magnetic Resonance Imagining revealed a mass (3.4 cm) in the parotid gland with a predominant cystic/necrotic component. The cytology was atypical (Milan3) and a total parotidectomy and selective lymph node dissection was done. The resection showed extensive necrosis with high grade sarcomatous (chondrosarcoma) areas. The epithelial component was adenoid cystic carcinoma with perineural invasion. The patient is currently undergoing radiotherapy of the tumor bed and skull base due to propensity of perineural invasion of the adenoid cystic component. The most common carcinomas in carcinosarcomas of salivary glands are adenocarcinoma and squamous cell carcinoma. CONCLUSION: Carcinosarcoma is a high-grade aggressive lesion with a poor prognosis and should be treated aggressively. More studies are needed to understand the origin of these tumors.


Asunto(s)
Neoplasias Óseas , Carcinoma Adenoide Quístico , Carcinosarcoma , Condrosarcoma , Neoplasias de la Parótida , Humanos , Femenino , Anciano de 80 o más Años , Glándula Parótida/patología , Neoplasias de la Parótida/diagnóstico por imagen , Neoplasias de la Parótida/cirugía , Carcinoma Adenoide Quístico/diagnóstico por imagen , Carcinoma Adenoide Quístico/cirugía , Carcinoma Adenoide Quístico/patología , Carcinosarcoma/diagnóstico , Carcinosarcoma/cirugía , Carcinosarcoma/patología , Condrosarcoma/patología , Neoplasias Óseas/patología
13.
Biomicrofluidics ; 17(4): 044105, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37614679

RESUMEN

The blood-brain barrier is a key structure regulating the health of the brain and access of drugs and pathogens to neural tissue. Shear stress is a key regulator of the blood-brain barrier; however, the commonly used multi-well vitro models of the blood-brain barrier do not incorporate shear stress. In this work, we designed and validated a high-throughput system for simulating the blood-brain barrier that incorporates physiological flow and incorporates an optimized cellular model of the blood-brain barrier. This system can perform assays of blood-brain barrier function with shear stress, with 48 independent assays simultaneously. Using the high throughput assay, we conducted drug screening assays to explore the effects of compounds for opening or closing blood-brain barrier. Our studies revealed that assays with shear stress were more predictive and were able to identify compounds known to modify the blood-brain barrier function while static assays were not. Overall, we demonstrate an optimized, high throughput assay for simulating the blood-brain barrier that incorporates shear stress and is practical for use in drug screening and other high throughput studies of toxicology.

14.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37631071

RESUMEN

Mescaline derivative (2C phenethylamines) drugs have been modified by the introduction of a N-2-methoxybenzyl group to originate a new series of compounds with recognized and potent psychedelic effects, the NBOMe-drugs. Although they are prevalent in unregulated drug markets, their toxicity profile is still poorly understood, despite several reports highlighting cases of acute intoxication, with brain and liver toxicity. Thus, in this study, mescaline, 2C-N (insertion of a nitro in the para position of the 2C phenethylamines aromatic ring) and 2C-B (insertion of a bromide in the para position of the 2C phenethylamines aromatic ring) and their corresponding NBOMe counterparts, mescaline-NBOMe, 25N-NBOMe and 25B-NBOMe, were synthetized and the in vitro neuro- and hepatocytotoxicity evaluated in differentiated SH-SY5Y and HepG2 cell lines, respectively. Cytotoxicity, oxidative stress, metabolic and energetic studies were performed to evaluate the main pathways involved in their toxicity. Our results demonstrated that the presence of the N-2-methoxybenzyl group significantly increased the in vitro cytotoxicity of 2C phenethylamines drugs in both cell lines, with the NBOMe drugs presenting lower EC50 values when compared to their counterparts. Consistently, our data showed a correlation between the drug's lipophilicity and the EC50 values, except for 2C-B. The 2C-B presented higher cytotoxic effects in both cell lines than mescaline-NBOMe, a result that can be explained by its higher passive permeability. All the NBOMe derivatives were able to cross the blood-brain barrier. Considering metabolic studies, the cytotoxicity of these drugs was shown to be influenced by inhibition of cytochrome P450 (CYP), which suggests a potential role of this enzyme complex, especially CYP3A4 and CYP2D6 isoenzymes in SH-SY5Y cells, in their detoxification or bioactivation. Furthermore, in differentiated SH-SY5Y cells, the drugs were able to induce mitochondrial membrane depolarization, and to disrupt GSH and ATP intracellular levels, these effects being concentration dependent and more pronounced for the NBOMe derivatives. No ROS overproduction was detected for any of the drugs in the tested experimental conditions. A correlation between a drug's lipophilicity and the EC50 values in both cell lines, except for 2C-B, was also obtained. In summary, the introduction of a NBOMe moiety to the parent drugs significantly increases their lipophilicity, brain permeability and cytotoxic effects, with GSH and ATP homeostasis disruption. The inhibition of CYP3A4 and CYP2D6 emphasized that CYP-mediated metabolism impacts the toxicity of these drugs.

15.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176018

RESUMEN

With the goal of combating the multi-faceted Alzheimer's disease (AD), a series of Rivastigmine-Benzimidazole (RIV-BIM) hybrids was recently reported by us as multitarget-directed ligands, thanks to their capacity to tackle important hallmarks of AD. In particular, they exhibited antioxidant activity, acted as cholinesterase inhibitors, and inhibited amyloid-ß (Aß) aggregation. Herein, we moved forward in this project, studying their ability to chelate redox-active biometal ions, Cu(II) and Fe(III), with widely recognized roles in the generation of oxidative reactive species and in protein misfolding and aggregation in both AD and Parkinson's disease (PD). Although Cu(II) chelation showed higher efficiency for the positional isomers of series 5 than those of series 4 of the hybrids, the Aß-aggregation inhibition appears more dependent on their capacity for fibril intercalation than on copper chelation. Since monoamine oxidases (MAOs) are also important targets for the treatment of AD and PD, the capacity of these hybrids to inhibit MAO-A and MAO-B was evaluated, and they showed higher activity and selectivity for MAO-A. The rationalization of the experimental evaluations (metal chelation and MAO inhibition) was supported by computational molecular modeling studies. Finally, some compounds showed also neuroprotective effects in human neuroblastoma (SH-SY5Y cells) upon treatment with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxic metabolite of a Parkinsonian-inducing agent.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Enfermedades Neurodegenerativas , Humanos , Rivastigmina/farmacología , Compuestos Férricos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Monoaminooxidasa/metabolismo , Quelantes/farmacología , Bencimidazoles
16.
Pharmacol Ther ; 244: 108373, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894028

RESUMEN

Ferroptosis is a type of regulated cell death characterized by intracellular accumulation of iron and reactive oxygen species, inhibition of system Xc-, glutathione depletion, nicotinamide adenine dinucleotide phosphate oxidation and lipid peroxidation. Since its discovery and characterization in 2012, many efforts have been made to reveal the underlying mechanisms, modulating compounds, and its involvement in disease pathways. Ferroptosis inducers include erastin, sorafenib, sulfasalazine and glutamate, which, by inhibiting system Xc-, prevent the import of cysteine into the cells. RSL3, statins, Ml162 and Ml210 induce ferroptosis by inhibiting glutathione peroxidase 4 (GPX4), which is responsible for preventing the formation of lipid peroxides, and FIN56 and withaferin trigger GPX4 degradation. On the other side, ferroptosis inhibitors include ferrostatin-1, liproxstatin-1, α-tocopherol, zileuton, FSP1, CoQ10 and BH4, which interrupt the lipid peroxidation cascade. Additionally, deferoxamine, deferiprone and N-acetylcysteine, by targeting other cellular pathways, have also been classified as ferroptosis inhibitors. Increased evidence has established the involvement of ferroptosis in distinct brain diseases, including Alzheimer's, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, multiple sclerosis, and Friedreich's ataxia. Thus, a deep understanding of how ferroptosis contributes to these diseases, and how it can be modulated, can open a new window of opportunities for novel therapeutic strategies and targets. Other studies have shown a sensitivity of cancer cells with mutated RAS to ferroptosis induction and that chemotherapeutic agents and ferroptosis inducers synergize in tumor treatment. Thus, it is tempting to consider that ferroptosis may arise as a target mechanistic pathway for the treatment of brain tumors. Therefore, this work provides an up-to-date review on the molecular and cellular mechanisms of ferroptosis and their involvement in brain diseases. In addition, information on the main ferroptosis inducers and inhibitors and their molecular targets is also provided.


Asunto(s)
Encefalopatías , Ferroptosis , Humanos , Muerte Celular/fisiología , Especies Reactivas de Oxígeno/metabolismo , Peroxidación de Lípido , Encefalopatías/tratamiento farmacológico
17.
J Adv Res ; 54: 251-269, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36822390

RESUMEN

INTRODUCTION: The infections by multidrug-resistant bacteria are a growing threat to human health, and the efficacy of the available antibiotics is gradually decreasing. As such, new antibiotic classes are urgently needed. OBJECTIVES: This study aims to evaluate the antimicrobial activity, safety and mechanism of action of phytochemical-based triphenylphosphonium (TPP+) conjugates. METHODS: A library of phytochemical-based TPP+ conjugates was repositioned and extended, and its antimicrobial activity was evaluated against a panel of Gram-positive (methicillin-resistant Staphylococcus aureus - MRSA) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii) and fungi (Candida albicans, Cryptococcus neoformans var. grubii). The compounds' cytotoxicity and haemolytic profile were also evaluated. To unravel the mechanism of action of the best compounds, the alterations in the surface charge, bacterial membrane integrity, and cytoplasmic leakage were assessed. RESULTS: Structure-activity-toxicity data revealed the contributions of the different structural components (phenolic ring, carbon-based spacers, carboxamide group, alkyl linker) to the compounds' bioactivity and safety. Dihydrocinnamic derivatives 5 m and 5n stood out as safe, potent and selective antibacterial agents against S. aureus (MIC < 0.25 µg/mL; CC50 > 32 µg/mL; HC10 > 32 µg/mL). Mechanistic studies suggest that the antibacterial activity of compounds 5 m and 5n may result from interactions with the bacterial cell wall and membrane. CONCLUSIONS: Collectively, these studies demonstrate the potential of phytochemical-based TPP+ conjugates as a new class of antibiotics.


Asunto(s)
Líquidos Iónicos , Staphylococcus aureus Resistente a Meticilina , Humanos , Staphylococcus aureus , Líquidos Iónicos/farmacología , Antibacterianos/farmacología , Bacterias , Escherichia coli
18.
J Med Chem ; 66(3): 1835-1851, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36716281

RESUMEN

Although the lipophilic triphenylphosphonium (TPP+) cation is widely used to target antioxidants to mitochondria, TPP+-based derivatives have shown cytotoxicity in several biological in vitro models. We confirmed that Mito.TPP is cytotoxic to both human neuronal (SH-SY5Y) and hepatic (HepG2) cells, decreasing intracellular adenosine triphosphate (ATP) levels, leading to mitochondrial membrane depolarization and reduced mitochondrial mass after 24 h. We surpassed this concern using nitrogen-derived cationic carriers (Mito.PICO, Mito.ISOQ, and Mito.IMIDZ). As opposed to Mito.TPP, these novel compounds were not cytotoxic to SH-SY5Y and HepG2 cells up to 50 µM and after 24 h of incubation. All of the cationic derivatives accumulated inside the mitochondrial matrix and acted as neuroprotective agents against iron(III), hydrogen peroxide, and tert-butyl hydroperoxide insults. The overall data showed that nitrogen-based cationic carriers can modulate the biological performance of mitochondria-directed antioxidants and are an alternative to the TPP cation.


Asunto(s)
Antineoplásicos , Neuroblastoma , Humanos , Antioxidantes/farmacología , Cationes/farmacología , Compuestos Férricos , Mitocondrias
19.
Ageing Res Rev ; 83: 101790, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36402404

RESUMEN

Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of upper and lower motor neurons (MNs) leading to paralysis and, ultimately, death by respiratory failure 3-5 years after diagnosis. Edaravone and Riluzole, the only drugs currently approved for ALS treatment, only provide mild symptomatic relief to patients. Extraordinary progress in understanding the biology of ALS provided new grounds for drug discovery. Over the last two decades, mitochondria and oxidative stress (OS), iron metabolism and ferroptosis, and the major regulators of hypoxia and inflammation - HIF and NF-κB - emerged as promising targets for ALS therapeutic intervention. In this review, we focused our attention on these targets to outline and discuss current advances in ALS drug development. Based on the challenges and the roadblocks, we believe that the rational design of multi-target ligands able to modulate the complex network of events behind the disease can provide effective therapies in a foreseeable future.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Edaravona/uso terapéutico , Riluzol/uso terapéutico , Estrés Oxidativo , Descubrimiento de Drogas
20.
Eur J Med Chem ; 243: 114740, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36116233

RESUMEN

Increased oxidative stress (OS) and depletion of nigrostriatal dopamine (DA) are closely linked to the neurodegeneration observed in Parkinson's Disease (PD). Caffeic acid (CA)-based antioxidants were developed, and their inhibitory activities towards monoamine oxidases (MAOs) and catechol O-methyltransferases (COMT) were screened. The results showed that the incorporation of an extra double bond maintained or even boosted the antioxidant properties of CA. α-CN derivatives displayed redox potentials (Ep) similar to CA (1) and inhibited hMAO-B with low µM IC50 values. Moreover, catechol amides acted as MB-COMT inhibitors, showing IC50 values within the low µM range. In general, CA derivatives presented safe cytotoxicity profiles at concentrations up to 10 µM. The formation of reactive oxygen species (ROS) induced by CA derivatives may be underlying the cytotoxic effects observed at higher concentrations. Catechol amides 3-6, 8-11 at 10 µM protected cells against oxidative damage. Compounds 3 and 8 were predicted to cross the blood-brain barrier (BBB) by passive diffusion. In summary, we report for the first time BBB-permeant CA-based multitarget lead compounds that may restore DAergic neurotransmission (dual hMAO-B/MB-COMT inhibition) and prevent oxidative damage. The data represents a groundbreaking advancement towards the discovery of the next generation of new drugs for PD.


Asunto(s)
Catecol O-Metiltransferasa , Enfermedad de Parkinson , Humanos , Catecol O-Metiltransferasa/química , Catecol O-Metiltransferasa/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Inhibidores de Catecol O-Metiltransferasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Catecoles/farmacología , Oxidación-Reducción , Amidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA