RESUMEN
Chitosan, a natural polysaccharide sourced from crustaceans and insects, is often used with hydrogels in wound care. Evaluating its cytotoxicity and antimicrobial properties is crucial for its potential use in dentistry. OBJECTIVE: To investigate the mechanical properties of gelatin hydrogels based on decaethylated chitosan and antimicrobial activity against Streptococcus mutans and their biological effects with stem cells from apical papilla (SCAPs). MATERIAL AND METHODS: Gelatin-chitosan hydrogels were synthesized at concentrations of 0%, 0.2% and 0.5%. Enzymatic and hydrolytic degradation, along with swelling capacity, was assessed. Fourier transform infrared spectroscopy (FTIR) analysis was employed to characterize the hydrogels. The interaction between hydrogels and SCAPs was examined through initial adhesion and cell proliferation at 24 and 48 h, using the Thiazolyl Blue Tetrazolium Bromide (MTT assay). The antimicrobial effect was evaluated using agar diffusion and a microdilution test against S. mutans. Uniaxial tensile strength (UTS) was also measured to assess the mechanical properties of the hydrogels. RESULTS: The hydrogels underwent hydrolytic and enzymatic degradation at 30, 220, 300 min and 15, 25, 30 min, respectively. Significantly, (p < 0.01) swelling capacity occurred at 20, 40, 30 min, respectively. Gelatin-chitosan hydrogels' functional groups were confirmed using vibrational pattern analysis. SCAPs proliferation corresponded to 24 h = 73 ± 2%, 82 ± 2%, 61 ± 6% and 48 h = 83 ± 11%, 86 ± 2%, 44 ± 2%, respectively. The bacterial survival of hydrogel interaction was found to be 96 ± 1%, 17 ± 1.5% (p < 0.01) and 1 ± 0.5% (p < 0.01), respectively. UTS showed enhanced (p < 0.05) mechanical properties with chitosan presence. CONCLUSION: Gelatin-chitosan hydrogels displayed favorable degradation, swelling capacity, mild dose-dependent cytotoxicity, significant proliferation with stem cells from apical papilla (SCAPs), substantial antimicrobial effects against S. mutans and enhanced mechanical properties. These findings highlight their potential applications as postoperative care dressings.
RESUMEN
Opuntia Ficus-indica, or nopal, is traditionally used for its medicinal properties in Mexico. This study aims to decellularize and characterize nopal (Opuntia Ficus-indica) scaffolds, assess their degradation and the proliferation of hDPSC, and determine potential pro-inflammatory effects by assessing the expression of cyclooxygenase 1 and 2 (COX-1 and 2). The scaffolds were decellularized using a 0.5% sodium dodecyl sulfate (SDS) solution and confirmed by color, optical microscopy, and SEM. The degradation rates and mechanical properties of the scaffolds were determined by weight and solution absorbances using trypsin and PBS and tensile strength testing. Human dental pulp stem cells (hDPSCs) primary cells were used for scaffold-cell interaction and proliferation assays, as well as an MTT assay to determine proliferation. Proinflammatory protein expression of COX-I and -II was discovered by Western blot assay, and the cultures were induced into a pro-inflammatory state with interleukin 1-ß. The nopal scaffolds exhibited a porous structure with an average pore size of 252 ± 77 µm. The decellularized scaffolds showed a 57% reduction in weight loss during hydrolytic degradation and a 70% reduction during enzymatic degradation. There was no difference in tensile strengths between native and decellularized scaffolds (12.5 ± 1 and 11.8 ± 0.5 MPa). Furthermore, hDPSCs showed a significant increase in cell viability of 95% and 106% at 168 h for native and decellularized scaffolds, respectively. The combination of the scaffold and hDPSCs did not cause an increase in the expression of COX-1 and COX-2 proteins. However, when the combination was exposed to IL-1ß, there was an increase in the expression of COX-2. This study demonstrates the potential application of nopal scaffolds in tissue engineering and regenerative medicine or dentistry, owing to their structural characteristics, degradation properties, mechanical properties, ability to induce cell proliferation, and lack of enhancement of pro-inflammatory cytokines.
RESUMEN
To compare the Vickers microhardness, surface roughness, initial adhesion, and osteogenic differentiation on titanium (Ti) and nitrurized titanium (NTi) plates were treated by UV irradiation and chitosan. Each plate was subjected to Vickers hardness with a pressure of 2.9 N for 10 seconds and roughness evaluation by atomic force microscope (AFM) analysis. Three groups of each type of plates were tested: control (C), ultraviolet irradiation (UV), and chitosan (Q). The UV group was exposed to UV-irradiation for 20 min at 253.7 nm (52 µW/cm2). The Q group was coated with 1% chitosan, and the C group had no treatment. The osteoblasts (2 × 106 cells/mL) were inoculated in each group for 60 min and their viability was determined by the MTT bioassay. Osteogenic differentiation was performed over 4 weeks and determined by alizarin red staining. The mean was analyzed with the Shapiro-Wilks, Kruskall-Wallis, and Mann-Whitney U tests of normality (n = 9/gp). The NTi plates hardness (125.1 ± 4.01 HV) was higher (P = 0.026) than the Ti plates (121.3 ± 2.23 HV). The surface topography was: NTi (Ra = 0.098 µm) and Ti (Ra = 0.212 µm). The quantification of cell adhesion was: Ti + Q = 123 ± 4.9% (P < 0.05) < NTi + Q = 107 ± 3.3% < Ti = 100 ± 10.7% < NTi = 72 ± 6.8% < NTi + UV = 71 ± 4.4% < Ti + UV = 69 ± 3.5%, regardless the plates, the presence of chitosan induce a faster osteogenic differentiation. The Ti + Q plates tested the highest cell attachment and osteogenic adhesion suggesting their potential use of chitosan for cell-implant interaction.
Asunto(s)
Quitosano , Humanos , Adhesión Celular , Quitosano/farmacología , Titanio/farmacología , Osteogénesis , Pulpa Dental , Diferenciación Celular , Propiedades de SuperficieRESUMEN
The (-)-Epigallocatechin-gallate (EGCG) metabolite is a natural polyphenol derived from green tea and is associated with antioxidant, biocompatible, and anti-inflammatory effects. OBJECTIVE: To evaluate the effects of EGCG to promote the odontoblast-like cells differentiated from human dental pulp stem cells (hDPSCs); the antimicrobial effects on Escherichia coli, Streptococcus mutans, and Staphylococcus aureus; and improve the adhesion on enamel and dentin by shear bond strength (SBS) and the adhesive remnant index (ARI). MATERIAL AND METHODS: hDSPCs were isolated from pulp tissue and immunologically characterized. EEGC dose-response viability was calculated by MTT assay. Odontoblast-like cells were differentiated from hDPSCs and tested for mineral deposition activity by alizarin red, Von Kossa, and collagen/vimentin staining. Antimicrobial assays were performed in the microdilution test. Demineralization of enamel and dentin in teeth was performed, and the adhesion was conducted by incorporating EGCG in an adhesive system and testing with SBS-ARI. The data were analyzed with normalized Shapiro-Wilks test and ANOVA post hoc Tukey test. RESULTS: The hDPSCs were positive to CD105, CD90, and vimentin and negative to CD34. EGCG (3.12 µg/mL) accelerated the differentiation of odontoblast-like cells. Streptococcus mutans exhibited the highest susceptibility < Staphylococcus aureus < Escherichia coli. EGCG increased (p < 0.05) the dentin adhesion, and cohesive failure was the most frequent. CONCLUSION: (-)-Epigallocatechin-gallate is nontoxic, promotes differentiation into odontoblast-like cells, possesses an antibacterial effect, and increases dentin adhesion.
RESUMEN
A recent discovery of revolutionary Clustered regularly interspaced palindromic repeats (CRISPR) is a gene-editing tool that provides a type of adaptive immunity in prokaryotic organisms, which is currently used as a revolutionizing tool in biomedical research. It has a mechanism of correcting genome errors, turning on/off genes in cells and organisms. Most importantly playing a crucial function in bacterial defence by identifying and destroying Deoxyribonucleic acid (DNA) segments during bacteriophage invasions since the CRISPR-associated protein 9 (Cas9) enzyme recognizes and cleaves invasive DNA sequences complementary to CRISPR. Therefore, researchers employ this biological device to manipulate the genes to develop new therapies to combat systemic diseases. Currently, the most significant advance at the laboratory level is the generation of cell and animal models, functional genomic screens, live images of the cell genome, and defective DNA repairs to find the cure for genetic disorders. Even though this technology has enormous biomedical applications in various sectors, this review will summarize CRISPR/Cas emphasizing both the therapeutic and diagnostic mechanisms developed in the field of dentistry and the promising attempts to transfer this technology to clinical application. Finally, future developments are also described, which proposes to use CRISPR/Cas systems for prospective clinical dentistry applications.