Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Environ Sci (China) ; 55: 76-85, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28477836

RESUMEN

The present study highlights the potential application of zinc peroxide (ZnO2) nanomaterial as an efficient material for the decontamination of cyanide from contaminated water. A process patent for ZnO2 synthesis has been granted in United States of America (US Patent number 8,715,612; May 2014), South Africa, Bangladesh, and India. The ZnO2 nanomaterial was capped with polyvinylpyrrolidone (PVP) to control the particle size. The PVP capped ZnO2 nanomaterial (PVP-ZnO2) before and after adsorption of cyanide was characterized by scanning electron microscope, transmission electron microscope, X-ray diffractometer, Fourier transform infrared spectroscopy and time of flight-secondary ion mass spectrometry. The remaining concentration of cyanide after adsorption by PVP-ZnO2 was determined using ion chromatograph. The adsorption of cyanide over PVP-ZnO2 was also studied as a function of pH, adsorbent dose, time and concentration of cyanide. The maximum removal of cyanide was observed in pH range 5.8-7.8 within 15min. The adsorption data was fitted to Langmuir and Fruendlich isotherm and it has been observed that data follows both the isotherms and also follows second order kinetics.


Asunto(s)
Cianuros/química , Peróxidos/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Zinc/química , Cianuros/análisis , India , Sudáfrica , Contaminantes Químicos del Agua/análisis , Zinc/análisis
2.
Ecotoxicol Environ Saf ; 135: 68-74, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27693679

RESUMEN

In the past decade, various natural byproducts, advanced metal oxide composites and photocatalysts have been reported for removal of dyes from water. Although these materials are useful for select applications, they have some limitations such as use at fixed temperature, ultra violet (UV) light and the need for sophisticated experimental set up. These materials can remove dyes up to a certain extent but require long time. To overcome these limitations, a promising adsorbent zinc peroxide (ZnO2) nanomaterial has been developed for the removal of Congo red (CR) dye from contaminated water. ZnO2 is highly efficient even in the absence of sunlight to remove CR from contaminated water upto the permissible limits set by the World Health Organization (WHO) and the United States- Environmental Protection Agency (US-EPA). The adsorbent has a specific property to adjust the pH of the test solution within 6.5-7.5 range irrespective of acidic or basic nature of water. The adsorption capacity of the material for CR dye was 208mgg-1 within 10min at 2-10pH range. The proposed material could be useful for the industries involved in water purification. The removal of CR has been confirmed by spectroscopic and microscopic techniques. The adsorption data followed a second order kinetics and Freundlich isotherm.


Asunto(s)
Colorantes/análisis , Rojo Congo/análisis , Nanoestructuras/química , Peróxidos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Compuestos de Zinc/química , Adsorción , Colorantes/química , Rojo Congo/química , Concentración de Iones de Hidrógeno , Cinética , Soluciones , Propiedades de Superficie , Estados Unidos , Contaminantes Químicos del Agua/química
3.
Materials (Basel) ; 7(5): 3820-3833, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-28788651

RESUMEN

In this manuscript, we discuss relationships between morphology and mechanical strength of carbonized structures, obtained via pyrolysis of polymeric precursors, across multiple length scales, from carbon fibers (CFs) with diameters of 5-10 µm to submicron thick carbon nanofibers (CNFs). Our research points to radial inhomogeneity, skin-core structure, as a size-dependent feature of polyacrylonitrile-based CFs. This inhomogeneity is a surface effect, caused by suppressed diffusion of oxygen and stabilization byproducts during stabilization through skin. Hence, reducing the precursor diameters from tens of microns to submicron appears as an effective strategy to develop homogeneous carbonized structures. Our research establishes the significance of this downsizing in developing lightweight structural materials by comparing intrinsic strength of radially inhomogeneous CFs with that of radially homogeneous CNF. While experimental studies on the strength of CNFs have targeted randomly oriented turbostratic domains, via continuum modeling, we have estimated that strength of CNFs can reach 14 GPa, when the basal planes of graphitic domains are parallel to nanofiber axis. The CNFs in our model are treated as composites of amorphous carbon (matrix), reinforced with turbostratic domains, and their strength is predicted using Tsai-Hill criterion. The model was calibrated with existing experimental data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA