Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nanoscale Horiz ; 9(11): 2069, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39268800

RESUMEN

Correction for 'New horizons on advanced nanoscale materials for Cultural Heritage conservation' by Rosangela Mastrangelo et al., Nanoscale Horiz., 2024, 9, 566-579, https://doi.org/10.1039/D3NH00383C.

2.
Sci Total Environ ; 952: 175864, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39216754

RESUMEN

Combined sewer overflows (CSOs) release a significant amount of pollutants, including microplastics (MPs), due to the discharge of untreated water into receiving water bodies. Constructed Wetlands (CWs) offer a promising strategy for CSO treatment and have recently attracted attention as a potential solution for MP mitigation. Nevertheless, limited research on MP dynamics within CSO events and MP removal performance in full-scale CW systems poses a barrier to this frontier of application. This research aims to address both these knowledge gaps, representing the first investigation of a multi-stage CSO-CW for MP removal. The study presents one year of seasonal data from the CSO-CW upstream of the WWTP in Carimate (Italy), evaluating the correlation of MP abundance with different water quality/quantity parameters and associated ecological risks. The results show a clear trend in MP abundance, which increases with rainfall intensity. The strong correlation between MP concentration, flow rate, and total suspended solids (TSS) validates the first flush phenomenon hypothesis and its impact on MP release during CSOs. Chemical characterization identifies acrylonitrile-butadiene-styrene (ABS), polyethylene (PE), and polypropylene (PP) as predominant polymers. The first vertical subsurface flow (VF) stage showed removal rates ranging from 40 % to 77 %. However, the unexpected increase in MP concentrations after the second free water surface (FWS) stage suggests the stochasticity of CSO events and the different hydraulic characteristics of the CW units have diverse effects on MP retention. These data confirm filtration as the main retention mechanism for MP within CW systems. The MP ecological risk assessment indicates a high-risk category for most of the water samples, mainly related to the frequent presence of ABS fragments. The results contribute to the current understanding of MPs released by CSOs and provide insights into the performance of different treatment units within a large-scale CSO-CW system, suggesting the requirement for further attention.

3.
Mar Pollut Bull ; 205: 116628, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917492

RESUMEN

The aim of this work was to provide evidence on the presence of microplastics (MPs) in regurgitated Yellow-legged Gull pellets (n = 18) from Sfax salina (south-eastern Tunisia). This artificial area is subject to high anthropogenic pressure and hosts Yellow-legged Gulls, which are at the top of the trophic chain and can be used as sentinel species to monitor litter in the environment, including plastic pollution. The total number of MPs found in the samples was 309, 63.8 % fibres (4.95 ± 3.51 MPs/g) and 36.2 % fragments (2.87 ± 1.74 MPs/g). Micro-FTIR analysis evidenced that a large proportion of the fibres was attributed to artificial cellulose (40.7 %). Ethylene vinyl acetate (EVA) and polyethylene (PE) were found in the fragments.


Asunto(s)
Charadriiformes , Monitoreo del Ambiente , Microplásticos , Polietileno , Contaminantes Químicos del Agua , Túnez , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Animales
4.
Artículo en Inglés | MEDLINE | ID: mdl-38610082

RESUMEN

Starch is a renewable biopolymer that can be sourced from agricultural waste and used to produce nanoparticles (SNPs). In particular, amorphous SNPs have potential application in numerous fields, including the consolidation of weakened paintings in the cultural heritage preservation. Starch dissolution followed by nanoprecipitation in nonsolvents is an advantageous synthetic route, but new methodologies are needed to feasibly control the physicochemical properties of the SNPs. Here, we explored nanoprecipitation by nonsolvency using a set of "green" solvents to obtain amorphous SNPs, rather than starch nanocrystals already reported in the literature. The effect of the nonsolvent on the ordering of polymer chains in the obtained SNPs was studied. The recovery of local order (e.g., isolated V-type helices) after dissolution was shown to depend on the type of solvents used in the dissolution and precipitation steps, while long-range order (extended arrays of helices) is lost. Aqueous dispersions of the SNPs provided effective consolidation of powdery painted layers, showing that the selection of particle synthetic routes can be dictated by sustainability and scalability criteria. These "green" formulations are candidates as new consolidants in art preservation, and the possibility of tuning local order in amorphous starch assemblies might also impact fields like food chemistry, pharmaceutics, and nanocomposites, where SNPs with tunable amorphousness are more advantageous than nanocrystals.

5.
Chem Sci ; 15(7): 2443-2455, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38362426

RESUMEN

The development of "green" chemistry materials with enhanced properties is a central topic in numerous applicative fields, including the design of polymeric systems for the conservation of works of art. Traditional approaches in art restoration comprise polymer thickeners and viscous dispersions to partially control solvents in the removal of soil or aged varnishes/coatings from artifacts. Alternatively, polymeric gel networks can be specifically designed to grant full control of the cleaning action, yielding safe, time- and cost-effective restorations. The selection of polymers and oligomers in gel design is crucial to tune solvent upload, retention, and controlled release over the sensitive artistic surfaces. Starting from an overview of traditional polymer formulations and state-of-the-art gel systems for cleaning works of art, we provide here the design of a new class of gels, focusing on the selection of oligomers to achieve gels with tailored hydrophilicity/hydrophobicity. We evaluated the oligomers Hydrophilic-Lipophilic Balance (HLB) by developing, for the first time, a novel methodology combining SEC and DOSY NMR analysis, which was tested on a library of "green" oligoesters synthesized by polycondensation and poorly explored in the literature. Oligomers with moderate polydispersity were chosen to validate the new protocol as a robust tool for designing polymeric gels even on industrial scale. The methodology is more time-effective than traditional methods, and gives additional insights on the oligomers physico-chemical nature, evaluating their compatibility with different solvents. Then, we used the selected oligoesters with castor oil to obtain a new class of organogels able to upload solvents with varying polarity, which effectively removed different types of unwanted layers typically found in painting restoration. These results validate the oligomers screening approach and the new class of gels as promising chemical processes/materials in art preservation. The methodology can potentially allow evaluation of HLB also for small molecules (e.g., surfactants), opening for the formulation of polymers solutions/gels beyond Cultural Heritage conservation, as in pharmaceutics, cosmetics, food industry, tissue engineering, agriculture, and others.

6.
Nanoscale Horiz ; 9(4): 566-579, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38264785

RESUMEN

Nanomaterials have permeated numerous scientific and technological fields, and have gained growing importance over the past decades also in the preservation of Cultural Heritage. After a critical overview of the main nanomaterials adopted in art preservation, we provide new insights into some highly relevant gels, which constitute valuable tools to selectively remove dirt or other unwanted layers from the surface of works of art. In particular, the recent "twin-chain" gels, obtained by phase separation of two different PVAs and freeze-thawing, were considered as the most performing gel systems for the cleaning of Cultural Heritage. Three factors are crucial in determining the final gel properties, i.e., pore size, pore connectivity, and surface roughness, which belong to the micro/nanodomain. The pore size is affected by the molecular weight of the phase-separating PVA polymer, while pore connectivity and tortuosity likely depend on interconnections formed during gelation. Tortuosity greatly impacts on cleaning capability, as the removal of matter at the gel-target interface increases with the uploaded fluid's residence time at the interface (higher tortuosity produces longer residence). The gels' surface roughness, adaptability and stickiness can also be controlled by modulating the porogen amount or adding different polymers to PVA. Finally, PVA can be partially replaced with different biopolymers yielding gels with enhanced sustainability and effective cleaning capability, where the selection of the biopolymer affects the gel porosity and effectiveness. These results shed new light on the effect of micro/nanoscale features on the cleaning performances of "twin-chain" and composite gels, opening new horizons for advanced and "green"/sustainable gel materials that can impact on fields even beyond art preservation, like drug-delivery, detergency, food industry, cosmetics and tissue engineering.

7.
J Colloid Interface Sci ; 657: 178-192, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38039879

RESUMEN

HYPOTHESIS: The development of gels capable to adapt and act at the interface of rough surfaces is a central topic in modern science for Cultural Heritage preservation. To overcome the limitations of solvents or polymer solutions, commonly used in the restoration practice, poly(vinyl alcohol) (PVA) "twin-chain" polymer networks (TC-PNs) have been recently proposed. The properties of this new class of gels, that are the most performing gels available for Cultural Heritage preservation, are mostly unexplored. This paper investigates how chemical modifications affect gels' structure and their rheological behavior, producing new gelled systems with enhanced and tunable properties for challenging applications, not restricted to Cultural Heritage preservation. EXPERIMENTS: In this study, the PVA-TC-PNs structural and functional properties were changed by functionalization with sebacic acid into a new class of TC-PNs. Functionalization affects the porosity and nanostructure of the network, changing its uptake/release of fluids and favoring the uptake of organic solvents with various polarity, a crucial feature to boost the versatility of TC-PNs in practical applications. FINDINGS: The functionalized gels exhibited unprecedented performances during the cleaning of contemporary paintings from the Peggy Gugghenheim collection (Venice), whose restoration with traditional solvents and swabs would be difficult to avoid possible disfigurements to the painted layers. These results candidate the functionalized TC-PNs as a new, highly promising class of gels in art preservation.

8.
Heliyon ; 9(9): e19626, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810079

RESUMEN

The reproduction of archaeological corrosion patinas is a key issue for the reliable validation of conservation materials before their use on cultural objects. In this study, bronze disks were intentionally buried for 15 years in the soil of the archaeological site of Tharros, both in laboratory and in situ, with the aim of reproducing corrosion patinas typical of archaeological artifacts to be used as representative surfaces for testing novel cleaning gels. The microstructural, microchemical and mineralogical features of the patinas were analyzed by a multianalytical approach, based on optical microscopy (OM), field emission scanning electron microscopy coupled with energy dispersive spectrometry (FE-SEM-EDS) and X-ray diffraction (XRD). The patinas developed in 15 years were compared with an archaeological bronze recovered from the same site after about two thousand years of burial (referred as short-term and long-term interaction, respectively). Results revealed a similar corrosion behavior, especially in terms of chemical composition and corrosion mechanisms. XRD detected the ubiquitous presence of cuprite, copper hydroxychlorides and terrigenous minerals, while OM and FE-SEM-EDS analyses of cross-sections evidenced similar patinas' stratigraphy, identifying decuprification as driving corrosion mechanism. However, some differences related to the type of local environment and to the time spent in soil were evidenced. In particular, patinas developed in situ are more heterogeneous and rougher, while the archaeological one is thicker and presents a major amount of cuprite, terrigenous deposits and uncommon corrosion compounds. Based on our findings, the disks buried in situ were selected and used as disposable substrates to study the cleaning effect of a novel polyvinyl alcohol (PVA)-based gel loaded with a chelating agent (Na2EDTA · 2H2O). Results show that the gel is effective in removing disfiguring degradation compounds and preserving the stable and protective patina. Based on the conservation needs, the time of application can be properly tuned. It is worth noticing that after a few minutes the green corrosion products can be selectively removed. The EDS analysis performed on the gels after cleaning reveals that they are highly selective for the removal of copper(II) compounds rather than Cu(I) oxide or Cu(0) from bronze substrates.

9.
Mar Pollut Bull ; 195: 115525, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37708604

RESUMEN

The role of Amazon on the transport and as a source of microplastics (MPs) to the ocean is uncertain. This study is an assessment on the distribution of MPs and microfibers (MFs) in a portion of the Amazon delta. Guajará bay is a potential source for surrounding waters, since a metropolis is located at the right margin. Surface water samples were collected during the dry and rainy season of 2014/2015 at six stations. MP and MF abundance ranged from 218 to 5529.98 (1565.01 ± 196.94) particles·m-3. Transparent, white and blue particles were frequent. Higher values were detected on the right, urbanized margin of the bay (p = 0.0124). Most of the particles were anthropogenic cellulose fibers (68.8 %). Polyethylene terephthalate (52.9 %) and polyamide (34.4 %) were the dominant polymers. Our results indicate higher MP and MF abundances near to the potential source, the urban nucleus, and related to local hydrodynamic characteristics.

10.
Langmuir ; 39(31): 10744-10755, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487238

RESUMEN

Cultural heritage is a crucial resource to increase our society's resilience. However, degradation processes, enhanced by environmental and anthropic risks, inevitably affect works of art, hindering their accessibility and socioeconomic value. In response, interfacial and colloidal chemistry has proposed valuable solutions over the past decades, overcoming the limitations of traditional restoration materials and granting cost- and time-effective remedial conservation of the endangered artifacts. Ranging from inorganic nanoparticles to hybrid composites and soft condensed matter (gels, microemulsions), a wide palette of colloidal systems has been made available to conservators worldwide, targeting the consolidation, cleaning, and protection of works of art. The effectiveness and versatility of the proposed solutions allow the safe and effective treatment of masterpieces belonging to different cultural and artistic productions, spanning from classic ages to the Renaissance and modern/contemporary art. Despite these advancements, the formulation of materials for the preservation of cultural heritage is still an open, exciting field, where recent requirements include coping with the imperatives of the Green Deal to foster the production of sustainable, low-toxicity, and environmentally friendly systems. This review gives a critical overview starting from pioneering works up to the latest advancements in colloidal systems for art conservation, a challenging topic where effective solutions can be transversal to multiple sectors even beyond cultural heritage preservation, from the pharmaceutical and food industry, to cosmetics, tissue engineering, and detergency.

11.
Sci Total Environ ; 880: 163199, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37004767

RESUMEN

The abundance and dispersion of plastic particles in aquatic ecosystems has become pervasive resulting in the incorporation of these materials into food webs. Here we describe the first record of plastic ingestion by the freshwater white-blotched river stingray Potamotrygon leopoldi (Potamotrygonidae), an endemic and threatened species in the Xingu River, Amazon basin. Potamotrygonidae stingrays inhabit exclusively Neotropical rivers, occupying rocky substrate habitats and feeding mainly on benthic macroinvertebrates. The gastrointestinal tract of 24 stingrays were analyzed, 16 (66.6 %) of which contained plastic particles. In total, 81 plastic particles were recorded and consisted of microplastics (< 5 mm, n = 57) and mesoplastics (5-25 mm, n = 24). The plastic particles found were classified into fibers (64.2 %, n = 52) and fragments (35.8 %, n = 29). The predominant color was blue (33.3 %, n = 27), followed by yellow (18.5 %, n = 15), white (14.8 %, n = 12), black (13.6 %, n = 11), green (6.2 %, n = 5), transparent (4.9 %, n = 4), pink, grey and brown (2.5 %, n = 2, each) and orange (1.2 %, n = 1). No significant correlation was observed between the number of plastic particles and the body size. Eight types of polymers were identified in the plastic particles analyzed using 2D FTIR Imaging. The most frequent polymer was artificial cellulose fiber. This is the first report of plastic ingestion by freshwater elasmobranchs in the world. Plastic waste has become an emerging problem in aquatic ecosystems globally and our results provide an important datapoint for freshwater stingrays in the Neotropics.


Asunto(s)
Rajidae , Contaminantes Químicos del Agua , Animales , Plásticos , Ecosistema , Agua Dulce , Ríos , Polímeros , Microplásticos , Ingestión de Alimentos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
12.
J Colloid Interface Sci ; 641: 685-694, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36965340

RESUMEN

The location and the conformational changes of proteins/enzymes immobilized within Metal Organic Frameworks (MOFs) are still poorly investigated and understood. Bovine serum albumin (BSA), used as a model protein, was immobilized within two different zeolitic imidazolate frameworks (ZIF-zni and ZIF-8). Pristine ZIFs and BSA@ZIFs were characterized by X-ray diffraction, small-angle X-ray scattering, scanning electron microscopy, confocal laser scanning microscopy, thermogravimetric analysis, micro-FTIR and confocal Raman spectroscopy to characterize MOFs structure and the protein location in the materials. Moreover, the secondary structure and conformation changes of BSA after immobilization on both ZIFs were studied with FTIR. BSA is located both in the inner and on the outer surface of MOFs, forming domains that span from the micro- to the nanoscale. BSA crystallinity (ß-sheets + α-helices) increases up to 25 % and 40 % due to immobilization within ZIF-zni and ZIF-8, respectively, with a consequent reduction of ß-turns.


Asunto(s)
Estructuras Metalorgánicas , Zeolitas , Albúmina Sérica Bovina , Zeolitas/química , Imidazoles/química , Estructuras Metalorgánicas/química , Conformación Molecular
13.
J Colloid Interface Sci ; 638: 363-374, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36746054

RESUMEN

HYPOTHESIS: Organic solvents are often used for cleaning highly water-sensitive artifacts in modern/contemporary art. Due to the toxicity of most solvents, confining systems must be formulated to use these fluids in a safe and controlled way. We propose here castor oil (CO) organogels, obtained thorough cost-effective sustainable polyurethane crosslinking. This methodology is complementary to previously demonstrated hydrogels, when conservators opt for organic solvents over aqueous formulations. EXPERIMENTS: The gels were characterized via Small-angle Neutron Scattering and rheology before and after swelling in two organic solvents commonly adopted in cleaning paintings. The removal of a photo-aged acrylic-ketonic varnish was evaluated under visible and ultraviolet light, and with FTIR 2D imaging. FINDINGS: The new gels are dry systems that can be easily stored and loaded with solvents before use. Their nanoscale organization, viscoelasticity and cleaning action are controlled changing the amount of crosslinking, the polymeric backbone, and the loaded solvents. The fluids are confined in the nanosized polymeric mesh of the gels, which are highly retentive, granting controlled release over delicate paint layers, and transparent, allowing monitoring of the cleaning process. These features, along with their sustainable synthesis, candidate the CO organogels as feasible solutions for cultural heritage preservation, expanding the palette of advanced tools for conservators over traditional thickeners.

14.
J Colloid Interface Sci ; 632(Pt A): 74-86, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36410296

RESUMEN

HYPOTHESIS: Materials and colloids science can provide significant contributions to the conservation of Cultural Heritage. Hybrid systems made of a castor oil-derived polymeric network and a disperse phase of zinc oxide particles (ZnO/COPs) can be more effective absorbers of acetic acid (AcOH, a major pollutant harmful to artifacts in museums and art collections) than state-of-the-art materials, provided the acid uptake mechanism by the hybrids is elucidated and optimized. The starting hypothesis was that the polymer matrix might act as transporter, while acid adsorption would take place at the ZnO particles surface. The effect of particles size was expected to play a significant role. EXPERIMENTS: The adsorption kinetics of the hybrids were studied in the 23-45˚C range, in comparison with activated charcoal, the benchmark employed by conservators. Morphological and fractal dimension of ZnO micro- and nano-particles in the hybrid networks were investigated and correlated to the adsorption kinetics. FINDINGS: The presence of a two-steps mechanism for AcOH uptake by the hybrids was demonstrated for the first time: a combination of Fickian diffusion and Case-II transport occurs in the COP matrix, and adsorption dominates acid uptake (followed by neutralization) at the particles surface. This mechanism is likely key to explain the enhanced performances of the hybrids vs activated charcoal and state-of-the-art tools to remove AcOH. The hybrids have high uptake capacity, and lower activation energies for the removal process than materials where the uptake of acid relies solely on adsorption. The size of the ZnO particles contributes to the process, i.e. nanoparticles form smaller and ramified fractal clusters that are able to adsorb AcOH more effectively than microparticles. These insights demonstrated the efficacy of the novel hybrids in art conservation, where the control of minimal concentrations of VOCs is crucial for the preventive conservation of masterpieces, and can be useful to other fields where efficient capture of acetic acid is critical (food industry, textile dyeing/printing, etc.).


Asunto(s)
Aceite de Ricino , Óxido de Zinc , Ácido Acético , Poliuretanos , Adsorción , Carbón Orgánico , Polímeros
15.
Chemosphere ; 310: 136830, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36243082

RESUMEN

Microplastics (MPs) and textile cellulose are globally pervasive pollutants in freshwater. In-situ studies assessing the ingestion of MPs by freshwater meiofauna are few. Here, we evaluated MP and textile cellulose ingestion by some meiofaunal taxa and functional guilds of a first-order stream in the city of Florence (Italy) by using a tandem microscopy approach (fluorescence microscopy and µFTIR). The study targeted five taxa (nematodes, oligochaetes, copepods, ephemeropterans and chironomids), three feeding (scrapers, deposit-feeders, and predators), and three locomotion (crawlers, burrowers, and swimmers) guilds. Fluorescent particles related to both MPs and textile cellulose resulted in high numbers in all taxa and functional guilds. We found the highest number of particles in nematodes (5200 particles/ind.) and deposit-feeders (1693 particles/ind.). Oligochaetes and chironomids (burrowers) ingested the largest particles (medium length: 28 and 48 µm, respectively), whereas deposit-feeders ingested larger particles (medium length: 26 µm) than scrapers and predators. Pellets were abundant in all taxa, except for Chironomidae. Textile cellulose fibers were present in all taxa and functional guilds, while MP polymers (EVA, PET, PA, PE, PE-PP) differed among taxa and functional guilds. In detail: EVA and PET particles were found only in chironomids, PE particles occurred in chironomids, copepods and ephemeropterans, PA particles were found in all taxa except in nematodes, whereas particles made of PE-PP blend occurred in oligochaetes and copepods. Burrowers and deposit-feeders ingested EVA, PET, PA, PE and PE-PP, while crawlers and scrapers ingested PE and PA. Swimmers and predators ingested PE, PA and PE-PP. Our findings suggest a pervasive level of plastic and textile cellulose pollution consistent with an urban stream which propagates in the meiofaunal assemblage of the stream ecosystem.


Asunto(s)
Copépodos , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos , Ecosistema , Celulosa , Contaminantes Químicos del Agua/análisis , Textiles , Ingestión de Alimentos , Monitoreo del Ambiente
16.
Polymers (Basel) ; 14(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36433074

RESUMEN

There is an urgent need for developing degradable polymeric systems based on bio-derived and sustainable materials. In recent years, polyurethanes derived from castor oil have emerged due to the large availability and sustainable characteristics of castor oil. However, these polymers are normally prepared through tedious and/or energy-intensive procedures or using high volatile and/or toxic reagents such as volatile isocyanates or epoxides. Furthermore, poor investigation has been carried out to design castor oil derived polyurethanes with degradable characteristics or thorough specifically sustainable synthetic procedures. Herein, castor oil-derived polyurethane with more than 90% biomass-derived carbon content and enhanced degradable features was prepared through a simple, eco-friendly (E-factor: 0.2), and scalable procedure, employing a recently developed commercially available biomass-derived (61% bio-based carbon content) low-volatile polymeric isocyanate. The novel material was compared with a castor oil derived-polyurethane prepared with a commercially available fossil-based isocyanate counterpart. The different castor oil-derived polyurethanes were investigated by means of water uptake, soil burial degradation, and disintegration tests in compost. Characterization analyses, including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM), were carried out both prior to and after degradation tests. The results suggest potential applications of the degradable castor oil-derived polyurethane in different fields, such as mulch films for agricultural purposes.

17.
J Hazard Mater ; 437: 129314, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35728311

RESUMEN

Due to the increasing evidence of widespread plastic pollution in the air, the impact on plants of airborne particles of polycarbonate (PC), polyethyleneterephthalate (PET), polyethylene (PE), and polyvinylchloride (PVC) was tested by administering pristine and aged airborne micro-nanoplastics (MNPs) to Tillandsia usneoides for two weeks. Here we showed that exposure to pristine MNPs, significantly reduced plant growth with respect to controls. Particularly, PVC almost halved plant development at the end of the treatment, while the other plastics exerted negative effects on growth only at the beginning of the exposure, with final stages comparable to those of controls. Plants exposed to aged MNPs showed significantly decreased growth at early stages with PC, later in the growth with PE, and even later with PET. Aged PVC did not exert a toxic effect on plants. When present, the plastic-mediated reduction in plant growth was coupled with a decrease in photosynthetic activity and alterations in the plant concentration of macro- and micronutrients. The plastic particles were showed to adhere to the plant surface and, preferentially, on the trichome wings. Our results reported, for the first time, evidence of negative effects of airborne plastic pollution on plant health, thus raising concerns for related environmental risks.


Asunto(s)
Bromeliaceae , Tillandsia , Animales , Monitoreo del Ambiente/métodos , Microplásticos , Plásticos/toxicidad , Cloruro de Polivinilo/toxicidad
18.
Sci Total Environ ; 839: 156259, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35644394

RESUMEN

The composition and distribution of microplastics (MPs) in the Brazilian Amazon Continental Shelf surface waters are described for the first time. The study was conducted during the 2018 rainy and dry seasons, using 57 water samples collected with aluminum buckets and filtered through a 64-µm mesh. The samples were vacuum-filtered in a still-air box, and the content of each filter was measured, counted, and classified. A total of 12,288 floating MPs were retrieved; particles were present at all 57 sampling points. The mean MP abundance was 3593 ± 2264 items·m-3, with significantly higher values during the rainy season (1500 to 12,967; 4772 ± 2761 items·m-3) than in the dry season (323 to 5733; 2672 ± 1167 items·m-3). Polyamides (PA), polyurethane (PU), and acrylonitrile butadiene styrene (ABS) were the most common polymers identified through Fourier Transform Infrared Spectroscopy (FTIR) analysis. Cellulose-based textile fibers were also abundant (~40%). Our results indicate that the Amazon Continental Shelf is contaminated with moderate to high levels of MPs; the highest abundances were recorded at stations near land-based sources such as river mouths and large coastal cities.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Plásticos/análisis , Ríos , Contaminantes Químicos del Agua/análisis
19.
Toxics ; 10(4)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35448420

RESUMEN

The terrestrial environment is an important contributor of microplastics (MPs) to the oceans. Urban streams, strictly interwoven in the city network and to the MPs' terrestrial source, have a relevant impact on the MP budget of large rivers and, in turn, marine areas. We investigated the fluxes (items/day) of MPs and natural fibers of Mugnone Creek, a small stream crossing the highly urbanized landscape of Florence (Italy) and ending in the Arno River (and eventually to the Tyrrhenian Sea). Measurements were done in dry and wet seasons for two years (2019-2020); stream sediments were also collected in 2019. The highest loads of anthropogenic particles were observed in the 2019 wet season (109 items/day) at the creek outlet. The number of items in sediments increased from upstream (500 items/kg) to urban sites (1540 items/kg). Fibers were the dominant shape class; they were mostly cellulosic in composition. Among synthetic items, fragments of butadiene-styrene (SBR), indicative of tire wear, were observed. Domestic wastewater discharge and vehicular traffic are important sources of pollution for Mugnone Creek, especially during rain events. The study of small creeks is of pivotal importance to limit the availability of MPs in the environment.

20.
J Colloid Interface Sci ; 614: 451-459, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35108636

RESUMEN

HYPOTHESIS: Acetic acid, a common pollutant present in museums and art galleries, can irreversibly damage works of art. Herein, a sustainable and scalable synthesis of zinc oxide-castor oil polyurethane hybrids (ZnO/COPs), to be used as acetic acid removers in the preventive conservation of Cultural Heritage, is reported. EXPERIMENTS: The adsorption capacities of ZnO/COPs were studied in saturated acetic acid atmosphere, at low acetic acid gas concentration, and inside a wooden crate (naturally emitting acetic acid) representative of those used in the storage deposits of museums and art collections. FINDINGS: Upon exposure, acetic acid interacts with the castor oil polyurethane and diffuses to the surface of ZnO particles where is stably fixed as zinc acetate crystals. Zinc acetate domains form homogeneously on the surface and are distributed evenly within the ZnO/COPs, thanks to weak interactions between the polyurethane matrix and acetic acid that favour the transport of the acid up to reach the zinc oxide surfaces, resulting in a synergistic effect. The ZnO/COPs composites showed significantly enhanced adsorption capacities of acetic acid surpassing those of the activated carbon benchmark, with the advantage of being easily handled and movable, without the health issues and risks associated to the use of non-confined micro/nano-powders.


Asunto(s)
Aceite de Ricino , Óxido de Zinc , Ácido Acético , Adsorción , Aceite de Ricino/química , Poliuretanos/química , Óxido de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA