Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Am Heart Assoc ; 13(20): e035714, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39392166

RESUMEN

BACKGROUND: In the past decade, the biological functions of various RNA modifications in mammals have been uncovered. N4-acetylcytidine (ac4C), a highly conserved RNA modification, has been implicated in human diseases. Despite this, the involvement of RNA ac4C modification in cardiac physiology and pathology remains incompletely understood. NAT10 (N-acetyltransferase 10) stands as the sole acetyltransferase known to catalyze RNA ac4C modification. This study aims to explore the role of NAT10 and ac4C modification in cardiac physiology and pathology. METHODS AND RESULTS: Cardiac-specific knockout of NAT10, leading to reduced RNA ac4C modification, during both neonatal and adult stages resulted in severe heart failure. NAT10 deficiency induced cardiomyocyte apoptosis, a crucial step in heart failure pathogenesis, supported by in vitro data. Activation of the p53 signaling pathway was closely associated with enhanced apoptosis in NAT10-deficient cardiomyocytes. As ac4C modification on mRNA influences translational efficiency, we employed ribosome footprints coupled with RNA sequencing to explore genome-wide translational efficiency changes caused by NAT10 deficiency. We identified and validated that the translational efficiency of Kmt5a was suppressed in NAT10 knockout hearts due to reduced ac4C modification on its mRNA. This finding was consistent with the observation that Kmt5a protein levels were reduced in heart failure despite unchanged mRNA expression. Knockdown of Kmt5a in cardiomyocytes recapitulated the phenotype of NAT10 deficiency, including increased cardiomyocyte apoptosis and activated p53 signaling. Finally, overexpression of Kmt5a rescued cardiomyocyte apoptosis and p53 activation induced by NAT10 inhibition. CONCLUSIONS: Our study highlights the significance of NAT10 in cardiomyocyte physiology, demonstrating that NAT10 loss is sufficient to induce cardiomyocyte apoptosis and heart failure. NAT10 regulates the translational efficiency of Kmt5a, a key mediator, through mRNA ac4C modification during heart failure.


Asunto(s)
Apoptosis , Insuficiencia Cardíaca , Ratones Noqueados , Miocitos Cardíacos , ARN Mensajero , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Animales , ARN Mensajero/metabolismo , ARN Mensajero/genética , Modelos Animales de Enfermedad , Biosíntesis de Proteínas , Acetiltransferasa E N-Terminal/genética , Acetiltransferasa E N-Terminal/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Acetiltransferasas N-Terminal/metabolismo , Acetiltransferasas N-Terminal/genética , Ratones , Transducción de Señal
2.
J Clin Invest ; 134(20)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255038

RESUMEN

Translation of mRNA to protein is tightly regulated by transfer RNAs (tRNAs), which are subject to various chemical modifications that maintain structure, stability, and function. Deficiency of tRNA N7-methylguanosine (m7G) modification in patients causes a type of primordial dwarfism, but the underlying mechanism remains unknown. Here we report that the loss of m7G rewires cellular metabolism, leading to the pathogenesis of primordial dwarfism. Conditional deletion of the catalytic enzyme Mettl1 or missense mutation of the scaffold protein Wdr4 severely impaired endochondral bone formation and bone mass accrual. Mechanistically, Mettl1 knockout decreased abundance of m7G-modified tRNAs and inhibited translation of mRNAs relating to cytoskeleton and Rho GTPase signaling. Meanwhile, Mettl1 knockout enhanced cellular energy metabolism despite incompetent proliferation and osteogenic commitment. Further exploration revealed that impairment of Rho GTPase signaling upregulated the level of branched-chain amino acid transaminase 1 (BCAT1) that rewired cell metabolism and restricted intracellular α-ketoglutarate (αKG). Supplementation of αKG ameliorated the skeletal defect of Mettl1-deficient mice. In addition to the selective translation of metabolism-related mRNAs, we further revealed that Mettl1 knockout globally regulated translation via integrated stress response (ISR) and mammalian target of rapamycin complex 1 (mTORC1) signaling. Restoring translation by targeting either ISR or mTORC1 aggravated bone defects of Mettl1-deficient mice. Overall, our study unveils a critical role of m7G tRNA modification in bone development by regulation of cellular metabolism and indicates suspension of translation initiation as a quality control mechanism in response to tRNA dysregulation.


Asunto(s)
Desarrollo Óseo , Enanismo , Ratones Noqueados , Animales , Ratones , Enanismo/genética , Enanismo/metabolismo , Enanismo/patología , Desarrollo Óseo/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Humanos , Osteogénesis , Metiltransferasas/genética , Metiltransferasas/metabolismo , Guanosina/análogos & derivados , Guanosina/metabolismo , Guanosina/genética , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética
3.
Nat Commun ; 15(1): 7077, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152118

RESUMEN

Enoblituzumab, an immunotherapeutic agent targeting CD276, shows both safety and efficacy in activating T cells and oligodendrocyte-like cells against various cancers. Preclinical studies and mouse models suggest that therapies targeting CD276 may outperform PD1/PD-L1 blockade. However, data from mouse models indicate a significant non-responsive population to anti-CD276 treatment, with the mechanisms of resistance still unclear. In this study, we evaluate the activity of anti-CD276 antibodies in a chemically-induced murine model of head and neck squamous cell carcinoma. Using models of induced and orthotopic carcinogenesis, we identify ITGB6 as a key gene mediating differential responses to anti-CD276 treatment. Through single-cell RNA sequencing and gene-knockout mouse models, we find that ITGB6 regulates the expression of the tumor-associated chemokine CX3CL1, which recruits and activates PF4+ macrophages that express high levels of CX3CR1. Inhibition of the CX3CL1-CX3CR1 axis suppresses the infiltration and secretion of CXCL16 by PF4+ macrophages, thereby reinvigorating cytotoxic CXCR6+ CD8+ T cells and enhancing sensitivity to anti-CD276 treatment. Further investigations demonstrate that inhibiting ITGB6 restores sensitivity to PD1 antibodies in mice resistant to anti-PD1 treatment. In summary, our research reveals a resistance mechanism associated with immune checkpoint inhibitor therapy and identifies potential targets to overcome resistance in cancer treatment.


Asunto(s)
Antígenos B7 , Neoplasias de Cabeza y Cuello , Ratones Noqueados , Animales , Ratones , Antígenos B7/metabolismo , Antígenos B7/genética , Antígenos B7/antagonistas & inhibidores , Humanos , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Línea Celular Tumoral , Ratones Endogámicos C57BL , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Modelos Animales de Enfermedad , Femenino , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
4.
J Immunother Cancer ; 12(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724465

RESUMEN

BACKGROUND: CD276 (B7-H3), a pivotal immune checkpoint, facilitates tumorigenicity, invasiveness, and metastasis by escaping immune surveillance in a variety of tumors; however, the underlying mechanisms facilitating immune escape in esophageal squamous cell carcinoma (ESCC) remain enigmatic. METHODS: We investigated the expression of CD276 in ESCC tissues from patients by using immunohistochemistry (IHC) assays. In vivo, we established a 4-nitroquinoline 1-oxide (4NQO)-induced CD276 knockout (CD276wKO) and K14cre; CD276 conditional knockout (CD276cKO) mouse model of ESCC to study the functional role of CD276 in ESCC. Furthermore, we used the 4NQO-induced mouse model to evaluate the effects of anti-CXCL1 antibodies, anti-Ly6G antibodies, anti-NK1.1 antibodies, and GSK484 inhibitors on tumor growth. Moreover, IHC, flow cytometry, and immunofluorescence techniques were employed to measure immune cell proportions in ESCC. In addition, we conducted single-cell RNA sequencing analysis to examine the alterations in tumor microenvironment following CD276 depletion. RESULTS: In this study, we elucidate that CD276 is markedly upregulated in ESCC, correlating with poor prognosis. In vivo, our results indicate that depletion of CD276 inhibits tumorigenesis and progression of ESCC. Furthermore, conditional knockout of CD276 in epithelial cells engenders a significant downregulation of CXCL1, consequently reducing the formation of neutrophil extracellular trap networks (NETs) via the CXCL1-CXCR2 signaling axis, while simultaneously augmenting natural killer (NK) cells. In addition, overexpression of CD276 promotes tumorigenesis via increasing NETs' formation and reducing NK cells in vivo. CONCLUSIONS: This study successfully elucidates the functional role of CD276 in ESCC. Our comprehensive analysis uncovers the significant role of CD276 in modulating immune surveillance mechanisms in ESCC, thereby suggesting that targeting CD276 might serve as a potential therapeutic approach for ESCC treatment.


Asunto(s)
Antígenos B7 , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Trampas Extracelulares , Animales , Femenino , Humanos , Masculino , Ratones , Antígenos B7/metabolismo , Quimiocina CXCL1/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/inmunología , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Trampas Extracelulares/metabolismo , Ratones Noqueados , Receptores de Interleucina-8B/metabolismo , Escape del Tumor , Microambiente Tumoral
5.
Nat Commun ; 15(1): 2818, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561369

RESUMEN

Interplay between innate and adaptive immune cells is important for the antitumor immune response. However, the tumor microenvironment may turn immune suppressive, and tumor associated macrophages are playing a role in this transition. Here, we show that CD276, expressed on tumor-associated macrophages (TAM), play a role in diminishing the immune response against tumors. Using a model of tumors induced by N-butyl-N-(4-hydroxybutyl) nitrosamine in BLCA male mice we show that genetic ablation of CD276 in TAMs blocks efferocytosis and enhances the expression of the major histocompatibility complex class II (MHCII) of TAMs. This in turn increases CD4 + and cytotoxic CD8 + T cell infiltration of the tumor. Combined single cell RNA sequencing and functional experiments reveal that CD276 activates the lysosomal signaling pathway and the transcription factor JUN to regulate the expression of AXL and MerTK, resulting in enhanced efferocytosis in TAMs. Proving the principle, we show that simultaneous blockade of CD276 and PD-1 restrain tumor growth better than any of the components as a single intervention. Taken together, our study supports a role for CD276 in efferocytosis by TAMs, which is potentially targetable for combination immune therapy.


Asunto(s)
Macrófagos Asociados a Tumores , Neoplasias de la Vejiga Urinaria , Animales , Masculino , Ratones , Eferocitosis , Evasión Inmune , Macrófagos/metabolismo , Factores de Transcripción/metabolismo , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria/metabolismo
6.
Int J Oral Sci ; 16(1): 29, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622125

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is characterized by high recurrence or distant metastases rate and the prognosis is challenging. There is mounting evidence that tumor-infiltrating B cells (TIL-Bs) have a crucial, synergistic role in tumor control. However, little is known about the role TIL-Bs play in immune microenvironment and the way TIL-Bs affect the outcome of immune checkpoint blockade. Using single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, the study identified distinct gene expression patterns in TIL-Bs. HNSCC samples were categorized into TIL-Bs inhibition and TIL-Bs activation groups using unsupervised clustering. This classification was further validated with TCGA HNSCC data, correlating with patient prognosis, immune cell infiltration, and response to immunotherapy. We found that the B cells activation group exhibited a better prognosis, higher immune cell infiltration, and distinct immune checkpoint levels, including elevated PD-L1. A prognostic model was also developed and validated, highlighting four genes as potential biomarkers for predicting survival outcomes in HNSCC patients. Overall, this study provides a foundational approach for B cells-based tumor classification in HNSCC, offering insights into targeted treatment and immunotherapy strategies.


Asunto(s)
Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Pronóstico , Biomarcadores , Neoplasias de Cabeza y Cuello/terapia , Análisis de la Célula Individual , Microambiente Tumoral
7.
Geroscience ; 46(5): 4373-4396, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38499958

RESUMEN

Di-(2-ethylhexyl) phthalate (DEHP), a prevalent plasticizer, is known to have endocrine-disrupting effects on males and cause reproductive toxicity. There were causal effects of DEHP on testosterone levels in the real world by Mendelian randomization analysis. Exposure to DEHP during the preadult stage might lead to premature testicular senescence, but the mechanisms responsible for this have yet to be determined. In this study, we administered DEHP (300 mg/kg/day) to male C57BL/6 mice from postnatal days 21 to 49. The mice were kept for 6 months without DEHP. RNA sequencing was conducted on testicular tissue at PNM6. The results indicated that DEHP hindered testicular development, lowered serum testosterone levels in male mice, and induced premature testicular senescence. TM3 Leydig cells were exposed to 300 µM of mono(2-ethylhexyl) phthalate (MEHP), the bioactive metabolite of DEHP, for 72 h. The results also found that DEHP/MEHP induced senescence in vivo and in vitro. The mitochondrial respiratory chain was disrupted in Leydig cells. The expression and stability of STAT5B were elevated by MEHP treatment in TM3 cells. Furthermore, p-ERK1/2 was significantly decreased by STAT5B, and mitochondria-STAT3 (p-STAT3 ser727) was significantly decreased due to the decrease of p-ERK1/2. Additionally, the senescence level of TM3 cells was decreased and treated with 5 mM NAC for 1 h after MEHP treatment. In conclusion, these findings provided a novel mechanistic understanding of Leydig cells by disrupting the mitochondrial respiratory chain through STAT5B-mitoSTAT3.


Asunto(s)
Dietilhexil Ftalato , Células Intersticiales del Testículo , Ratones Endogámicos C57BL , Factor de Transcripción STAT5 , Animales , Masculino , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/análogos & derivados , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Ratones , Factor de Transcripción STAT5/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Senescencia Celular/efectos de los fármacos , Plastificantes/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Testosterona/sangre , Disruptores Endocrinos/toxicidad
8.
Int J Oral Sci ; 16(1): 21, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424060

RESUMEN

Ameloblastoma is a benign tumor characterized by locally invasive phenotypes, leading to facial bone destruction and a high recurrence rate. However, the mechanisms governing tumor initiation and recurrence are poorly understood. Here, we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution. Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response (IR), bone remodeling (BR), tooth development (TD), epithelial development (ED), and cell cycle (CC) signatures. Of note, we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence, which was dominated by the EZH2-mediated program. Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids. These data described the tumor subpopulation and clarified the identity, function, and regulatory mechanism of CC ameloblastoma cells, providing a potential therapeutic target for ameloblastoma.


Asunto(s)
Ameloblastoma , Humanos , Ameloblastoma/genética , Ameloblastoma/patología , Recurrencia Local de Neoplasia , Fenotipo , Transformación Celular Neoplásica , Perfilación de la Expresión Génica
9.
Transl Res ; 268: 28-39, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38280546

RESUMEN

Tyrosine kinase inhibitors (TKIs) are frequently utilized in the management of malignant tumors. Studies have indicated that anlotinib has a significant inhibitory effect on oral squamous cell carcinoma (OSCC). However, the mechanisms underlying the development of resistance with long-term anlotinib treatment remain obscure. Our research found that METTL1 expression was heightened in anlotinib-resistant OSCC cells. We observed that METTL1 played a role in fostering resistance to anlotinib in both transgenic mouse models and in vitro. Mechanistically, the elevated METTL1 levels in anlotinib-resistant OSCC cells contributed to enhanced global mRNA translation and stimulated oxidative phosphorylation (OXPHOS) through m7G tRNA modification. Bioenergetic profiling demonstrated that METTL1 drived a metabolic shift from glycolysis to OXPHOS in anlotinib-resistant OSCC cells. Additionally, inhibition of OXPHOS biochemically negated METTL1's impact on anlotinib resistance. Overall, this study underscores the pivotal role of METTL1-mediated m7G tRNA modification in anlotinib resistance and lays the groundwork for novel therapeutic interventions to counteract resistance in OSCC.


Asunto(s)
Resistencia a Antineoplásicos , Indoles , Metiltransferasas , Neoplasias de la Boca , Quinolinas , ARN de Transferencia , Animales , Humanos , Ratones , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Indoles/farmacología , Reprogramación Metabólica , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones Transgénicos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Quinolinas/farmacología , ARN de Transferencia/metabolismo , ARN de Transferencia/genética
10.
Int J Oral Sci ; 16(1): 6, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38246918

RESUMEN

Existing studies have underscored the pivotal role of N-acetyltransferase 10 (NAT10) in various cancers. However, the outcomes of protein-protein interactions between NAT10 and its protein partners in head and neck squamous cell carcinoma (HNSCC) remain unexplored. In this study, we identified a significant upregulation of RNA-binding protein with serine-rich domain 1 (RNPS1) in HNSCC, where RNPS1 inhibits the ubiquitination degradation of NAT10 by E3 ubiquitin ligase, zinc finger SWIM domain-containing protein 6 (ZSWIM6), through direct protein interaction, thereby promoting high NAT10 expression in HNSCC. This upregulated NAT10 stability mediates the enhancement of specific tRNA ac4C modifications, subsequently boosting the translation process of genes involved in pathways such as IL-6 signaling, IL-8 signaling, and PTEN signaling that play roles in regulating HNSCC malignant progression, ultimately influencing the survival and prognosis of HNSCC patients. Additionally, we pioneered the development of TRMC-seq, leading to the discovery of novel tRNA-ac4C modification sites, thereby providing a potent sequencing tool for tRNA-ac4C research. Our findings expand the repertoire of tRNA ac4C modifications and identify a role of tRNA ac4C in the regulation of mRNA translation in HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , ARN de Transferencia , Humanos , Proteínas de Unión al ADN , Neoplasias de Cabeza y Cuello/genética , Acetiltransferasas N-Terminal , Serina , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello
11.
Oral Dis ; 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798926

RESUMEN

BACKGROUND: BRD4, belonging to the bromodomain extra-terminal (BET) protein family, plays a unique role in tumor progression. However, the potential impact of BRD4 in ameloblastoma (AM) remains largely unknown. Herein, we aimed to assess the expression and functional role of BRD4 in AM. METHODS: The expression level of BRD4 was assessed by immunohistochemistry. The proliferation, migration, invasion, and tumorigenic abilities of AM cells were assessed by a series of assays. To explore the molecular expression profile of BRD4-depleted AM cells, RNA sequencing (RNA-seq) was performed. Bioinformatic analysis was performed on AM expression matrices obtained from the Gene Expression Omnibus (GEO). The therapeutic efficacy of BET-inhibitors (BETi) was assessed with AM patient-derived organoids. RESULTS: Upregulation of BRD4 was observed in conventional AMs, recurrent AMs, and ameloblastic carcinomas. Depletion of BRD4 inhibited proliferation, invasion, migration, and tumorigenesis in AM. Administration of BETi attenuated the aggressiveness of AM and the growth of AM patient-derived organoids. Bioinformatic analysis indicated that BRD4 may promote AM progression by regulating the Wnt pathway and stemness-associated pathways. CONCLUSION: BRD4 increases the aggressiveness and promotes the recurrence of ameloblastoma by regulating the Wnt pathway and stemness-associated pathways. These findings highlight BRD4 as a promising therapeutic target in AM management.

12.
Int J Oral Sci ; 15(1): 38, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679344

RESUMEN

Pleomorphic adenoma (PA) is the most common benign tumour in the salivary gland and has high morphological complexity. However, the origin and intratumoral heterogeneity of PA are largely unknown. Here, we constructed a comprehensive atlas of PA at single-cell resolution and showed that PA exhibited five tumour subpopulations, three recapitulating the epithelial states of the normal parotid gland, and two PA-specific epithelial cell (PASE) populations unique to tumours. Then, six subgroups of PASE cells were identified, which varied in epithelium, bone, immune, metabolism, stemness and cell cycle signatures. Moreover, we revealed that CD36+ myoepithelial cells were the tumour-initiating cells (TICs) in PA, and were dominated by the PI3K-AKT pathway. Targeting the PI3K-AKT pathway significantly inhibited CD36+ myoepithelial cell-derived tumour spheres and the growth of PA organoids. Our results provide new insights into the diversity and origin of PA, offering an important clinical implication for targeting the PI3K-AKT signalling pathway in PA treatment.


Asunto(s)
Adenoma Pleomórfico , Mioepitelioma , Humanos , Adenoma Pleomórfico/genética , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transcriptoma
13.
J Clin Invest ; 133(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37643007

RESUMEN

PCIF1 can mediate the methylation of N6,2'-O-dimethyladenosine (m6Am) in mRNA. Yet, the detailed interplay between PCIF1 and the potential cofactors and its pathological significance remain elusive. Here, we demonstrated that PCIF1-mediated cap mRNA m6Am modification promoted head and neck squamous cell carcinoma progression both in vitro and in vivo. CTBP2 was identified as a cofactor of PCIF1 to catalyze m6Am deposition on mRNA. CLIP-Seq data demonstrated that CTBP2 bound to similar mRNAs as compared with PCIF1. We then used the m6Am-Seq method to profile the mRNA m6Am site at single-base resolution and found that mRNA of TET2, a well-known tumor suppressor, was a major target substrate of the PCIF1-CTBP2 complex. Mechanistically, knockout of CTBP2 reduced PCIF1 occupancy on TET2 mRNA, and the PCIF1-CTBP2 complex negatively regulated the translation of TET2 mRNA. Collectively, our study demonstrates the oncogenic function of the epitranscriptome regulator PCIF1-CTBP2 complex, highlighting the importance of the m6Am modification in tumor progression.


Asunto(s)
Neoplasias de Cabeza y Cuello , Factores de Transcripción , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Proteínas Co-Represoras/genética , Neoplasias de Cabeza y Cuello/genética , Metilación , Proteínas Nucleares/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Factores de Transcripción/metabolismo
14.
Am J Physiol Gastrointest Liver Physiol ; 325(3): G213-G229, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366545

RESUMEN

The endocannabinoid system (ECS) is dysregulated in various liver diseases. Previously, we had shown that the major endocannabinoid 2-arachidonoyl glycerol (2-AG) promoted tumorigenesis of intrahepatic cholangiocarcinoma (ICC). However, biosynthesis regulation and clinical significance of 2-AG remain elusive. In the present study, we quantified 2-AG by gas chromatography/mass spectrometry (GC/MS) and showed that 2-AG was enriched in patients with ICC samples as well as in thioacetamide-induced orthotopic rat ICC model. Moreover, we found that diacylglycerol lipase ß (DAGLß) was the principal synthesizing enzyme of 2-AG that significantly upregulated in ICC. DAGLß promoted tumorigenesis and metastasis of ICC in vitro and in vivo and positively correlated with clinical stage and poor survival in patients with ICC. Functional studies showed that activator protein-1 (AP-1; heterodimers of c-Jun and FRA1) directly bound to the promoter and regulated transcription of DAGLß, which can be enhanced by lipopolysaccharide (LPS). miR-4516 was identified as the tumor-suppressing miRNA of ICC that can be significantly suppressed by LPS, 2-AG, or ectopic DAGLß overexpression. FRA1 and STAT3 were targets of miR-4516 and overexpression of miRNA-4516 significantly suppressed expression of FRA1, SATA3, and DAGLß. Expression of miRNA-4516 was negatively correlated with FRA1, SATA3, and DAGLß in patients with ICC samples. Our findings identify DAGLß as the principal synthesizing enzyme of 2-AG in ICC. DAGLß promotes oncogenesis and metastasis of ICC and is transcriptionally regulated by a novel AP-1/DAGLß/miR4516 feedforward circuitry.NEW & NOTEWORTHY Dysregulated endocannabinoid system (ECS) had been confirmed in various liver diseases. However, regulation and function of 2-arachidonoyl glycerol (2-AG) and diacylglycerol lipase ß (DAGLß) in intrahepatic cholangiocarcinoma (ICC) remain to be elucidated. Here, we demonstrated that 2-AG was enriched in ICC, and DAGLß was the principal synthesizing enzyme of 2-AG in ICC. DAGLß promotes tumorigenesis and metastasis in ICC via a novel activator protein-1 (AP-1)/DAGLß/miR4516 feedforward circuitry.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , MicroARNs , Ratas , Animales , Factor de Transcripción AP-1/genética , Endocannabinoides , Lipoproteína Lipasa , Glicerol , Lipopolisacáridos , Colangiocarcinoma/patología , MicroARNs/genética , MicroARNs/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/metabolismo , Carcinogénesis , Línea Celular Tumoral
15.
Oral Dis ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249063

RESUMEN

OBJECTIVES: To reveal the effect and mechanism of methyltransferase-like 3 (METTL3) on cancer stem cells (CSCs) of head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS: First, we analyzed 14-HNSCC-patients' scRNA-seq dataset and TCGA dataset of HNSCC. Then, Mettl3 knockout or overexpression mice models were studied via tracing and staining technologies. In addition, we took flow cytometry sorting and sphere formation assays to observe tumorigenicity and used cell transfection and western blotting to verify target protein expression levels. Furthermore, methylated RNA immunoprecipitation sequencing (MeRIP-seq) and MeRIP-quantitative real-time PCR (MeRIP-qPCR) were taken to identify the mechanism of Mettl3 regulating Bmi1+ CSCs in HNSCC. RESULTS: Due to SOX4 transcriptional regulation, METTL3 regulated the malignant behavior of BMI1+ HNSCC stem cells through cell division pathway. The progression and malignancy of HNSCC were decreased after Mettl3 knocked-out, while increased after Mettl3 knocked-in in Bmi1+ CSCs in vivo. Knockdown of Mettl3 inhibited stemness properties of CSCs in vitro. Mechanically, Mettl3 mediated the m6 A modification of ALDH1A3 and ALDH7A1 mRNA in Bmi1+ HNSCC CSCs. CONCLUSION: Regulated by SOX4, METTL3-mediated ALDH m6 A methylation regulates the malignant behavior of BMI1+ HNSCC CSCs through cell division pathway.

16.
Oral Dis ; 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184032

RESUMEN

OBJECTIVE: Head and neck squamous cell carcinoma (HNSCC) is the most common type of malignancy in the head and neck region worldwide. The therapeutic strategies for HNSCC remain unsatisfying and limited. Here, we found a population of resistant Bmi1-expressing cells in the presence of cetuximab treatment and reported a novel role of SRY-box transcription factor 18 (SOX18), a member of the SOX family, in promoting HNSCC resistance to cetuximab. This study aimed to investigate the regulatory mechanism of Sox18 in Bmi1-positive cells and to search for better therapeutic targets. METHODS: We successfully obtained Bmi1CreER , RosatdTomato , and RosaDTA mice and identified Bmi1-expressing cells through lineage tracing. SOX18 expression in HNSCC and normal tissues was analyzed by immunohistochemistry, colocalization of Sox18, and Bmi1-expressing cells was analyzed by immunofluorescence, and SOX18 expression in SCC9 cell lines was quantified by western blotting and quantitative real-time PCR. The investigation of the mechanism of SOX18-mediated cetuximab resistance in Bmi1-positive cells was based on the analysis of single-cell RNA-seq data obtained from the Gene Expression Omnibus (GEO) database. Western blotting was performed to verify the results obtained from the single-cell RNA-seq analysis. RESULTS: In our study, we demonstrated that Bmi1-expressing cells were resistant to cetuximab treatment and that depletion of Bmi1-expressing cells improved cetuximab efficacy in HNSCC. We then discovered that Sox18 mediated the stem cell-like properties of Bmi1-expressing cells and promoted cellular cetuximab resistance through an oxidative phosphorylation pathway. There was a significant downregulation of key genes in the oxidative phosphorylation pathway in Sox18 knockout cell lines. CONCLUSIONS: Taken together, the findings of our study suggest that Sox18 mediates the resistance of Bmi1-expressing cells to cetuximab in HNSCC via the oxidative phosphorylation pathway.

17.
Cardiovasc Res ; 119(8): 1763-1779, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-36943764

RESUMEN

AIMS: The plasticity of vascular smooth muscle cells (VSMCs) enables them to alter phenotypes under various physiological and pathological stimuli. The alteration of VSMC phenotype is a key step in vascular diseases, including atherosclerosis. Although the transcriptome shift during VSMC phenotype alteration has been intensively investigated, uncovering multiple key regulatory signalling pathways, the translatome dynamics in this cellular process, remain largely unknown. Here, we explored the genome-wide regulation at the translational level of human VSMCs during phenotype alteration. METHODS AND RESULTS: We generated nucleotide-resolution translatome and transcriptome data from human VSMCs undergoing phenotype alteration. Deep sequencing of ribosome-protected fragments (Ribo-seq) revealed alterations in protein synthesis independent of changes in messenger ribonucleicacid levels. Increased translational efficiency of many translational machinery components, including ribosomal proteins, eukaryotic translation elongation factors and initiation factors were observed during the phenotype alteration of VSMCs. In addition, hundreds of candidates for short open reading frame-encoded polypeptides (SEPs), a class of peptides containing 200 amino acids or less, were identified in a combined analysis of translatome and transcriptome data with a high positive rate in validating their coding capability. Three evolutionarily conserved SEPs were further detected endogenously by customized antibodies and suggested to participate in the pathogenesis of atherosclerosis by analysing the transcriptome and single cell RNA-seq data from patient atherosclerotic artery samples. Gain- and loss-of-function studies in human VSMCs and genetically engineered mice showed that these SEPs modulate the alteration of VSMC phenotype through different signalling pathways, including the mitogen-activated protein kinase pathway and p53 pathway. CONCLUSION: Our study indicates that an increase in the capacity of translation, which is attributable to an increased quantity of translational machinery components, mainly controls alterations of VSMC phenotype at the level of translational regulation. In addition, SEPs could function as important regulators in the phenotype alteration of human VSMCs.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Ratones , Animales , Humanos , Músculo Liso Vascular/metabolismo , Sistemas de Lectura Abierta , Células Cultivadas , Fenotipo , Aterosclerosis/patología , Péptidos/genética , Miocitos del Músculo Liso/metabolismo , Proliferación Celular
18.
Front Oncol ; 12: 900108, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185257

RESUMEN

Background: FOSL1, a key component of the Activating protein-1 (AP-1) transcriptional complex, plays an important role in cancer cell migration, invasion, and proliferation. However, the impact of FOSL1 in ameloblastoma (AM) has not been clarified. Herein, we aimed to assess the expression of FOSL1 and investigate its functional role in AM. Methods: The expression of FOSL1 was examined based on an immunohistochemistry analysis of 96 AM samples. Cell proliferation, migration, invasion, and tumorigenesis were assessed using Cell Counting Kit-8 (CCK-8), colony formation, Transwell, and sphere formation assays. RNA sequencing (RNA-seq) was employed to investigate the molecular alterations of AM cells upon FOSL depletion. Microarrays of AMs were downloaded from the Gene Expression Omnibus (GEO) database for bioinformatics analysis. In addition, patient-derived AM organoids were used to evaluate the therapeutic value of the AP-1 inhibitor. Results: FOSL1 was detected in the nuclei of AMs and upregulated in conventional AMs compared to unicystic AMs and normal oral epithelium. Compared with primary AM, FOSL1 expression was significantly increased in recurrent AM. Genetic knockdown of FOSL1 suppressed the proliferation, migration, invasion, and sphere formation of AMs. Similar results were also observed by pharmacological inhibition of AP-1 activity. Moreover, the AP-1 inhibitor T5224 impeded the growth of organoids derived from AM patients. Mechanistically, our Ingenuity Pathway Analysis (IPA) and gene set enrichment analysis (GSEA) results revealed that depletion of FOSL1 inactivated kinetochore metaphase signaling and the epithelial-mesenchymal transition pathway and then impaired the aggressiveness of AM cells accordingly. Conclusion: FOSL1 promotes tumor recurrence and invasive growth in AM by modulating kinetochore metaphase signaling and the epithelial-mesenchymal transition pathway; thus, it represents a promising therapeutic target for AM treatment.

19.
Biochem Biophys Res Commun ; 626: 58-65, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35970045

RESUMEN

Serum response factor (SRF) cooperates with various co-factors to manage the specification of diverse cell lineages during heart development. Many microRNAs mediate the function of SRF in this process. However, how are miR210 and miR30c involved in the decision of cardiac cell fates remains to be explored. In this study, we found that SRF directly controlled the cardiac expression of miR210. Both miR210 and miR30c blocked the formation of beating cardiomyocyte during embryoid body (EB) differentiation, a cellular model widely used for studying cardiogenesis. Both of anticipated microRNA targets and differentially expressed genes in day8 EBs were systematically determined and enriched with gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) and Reactome. Functional enrichments of prediction microRNA targets and down-regulated genes in day8 EBs of miR210 suggested the importance of PI3K-Akt signal and ETS2 in miR210 inhibition of cardiomyocyte differentiation. Similar analyses revealed that miR30c repressed both developmental progress and the adrenergic signaling in cardiomyocytes during the differentiation of EBs. Taken together, SRF directs the expression of miR210 and miR30c, and they repress cardiac development via inhibiting the differentiation of cardiac muscle cell lineage as well as the cell proliferation. Through the regulation of specific microRNAs, the complication of SRF's function in heart development is emphasized.


Asunto(s)
Cuerpos Embrioides , MicroARNs , Diferenciación Celular/genética , Línea Celular , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo
20.
Mol Ther ; 30(11): 3394-3413, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35923111

RESUMEN

BET inhibition has been shown to have a promising antitumor effect in multiple tumors. However, the impact of BET inhibition on antitumor immunity was still not well documented in HNSCC. In this study, we aim to assess the functional role of BET inhibition in antitumor immunity and clarify its mechanism. We show that BRD4 is highly expressed in HNSCC and inversely correlated with the infiltration of CD8+ T cells. BET inhibition potentiates CD8+ T cell-based antitumor immunity in vitro and in vivo. Mechanistically, BRD4 acts as a transcriptional suppressor and represses the expression of MHC class I molecules by recruiting G9a. Pharmacological inhibition or genetic depletion of BRD4 potently increases the expression of MHC class I molecules in the absence and presence of IFN-γ. Moreover, compared to PD-1 blocking antibody treatment or JQ1 treatment individually, the combination of BET inhibition with anti-PD-1 antibody treatment significantly enhances the antitumor response in HNSCC. Taken together, our data unveil a novel mechanism by which BET inhibition potentiates antitumor immunity via promoting the expression of MHC class I molecules and provides a rationale for the combination of ICBs with BET inhibitors for HNSCC treatment.


Asunto(s)
Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Linfocitos T CD8-positivos , Proteínas Nucleares/genética , Línea Celular Tumoral , Factores de Transcripción/genética , Antígenos de Histocompatibilidad Clase I/genética , Proteínas de Ciclo Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA