Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Am Chem Soc ; 146(15): 10498-10507, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38590084

RESUMEN

Metastable compounds have greatly expanded the synthesizable compositions of solid-state materials and have attracted enormous amounts of attention in recent years. Especially, mechanochemically enabled metastable materials synthesis has been very successful in realizing cation-disordered materials with highly simple crystal structures, such as rock salts. Application of the same strategy for other structural types, especially for non-close-packed structures, is peculiarly underexplored. Niobium tungsten oxides (NbWOs), a class of materials that have been under the spotlight because of their diverse structural varieties and promising electrochemical and thermoelectric properties, are ideally suited to fill such a knowledge gap. In this work, we develop a new series of metastable NbWOs and realize one with a fully cation-disordered structure. Furthermore, we find that metastable NbWOs transform to a cation-disordered cubic structure when applied as a Li-ion battery anode, highlighting an intriguing non-close-packed-close-packed conversion process, as evidenced in various physicochemical characterizations, in terms of diffraction, electronic, and vibrational structures. Finally, by comparing the cation-disordered NbWO with other trending cation-disordered oxides, we raise a few key structural features for cation disorder and suggest a few possible research opportunities for this field.

2.
Small ; 20(14): e2308113, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37972285

RESUMEN

Developing low-voltage carboxylate anode materials is critical for achieving low-cost, high-performance, and sustainable Na-ion batteries (NIBs). However, the structure design rationale and structure-performance correlation for organic carboxylates in NIBs remains elusive. Herein, the spatial effect on the performance of carboxylate anode materials is studied by introducing heteroatoms in the conjugation structure and manipulating the positions of carboxylate groups in the aromatic rings. Planar and twisted organic carboxylates are designed and synthesized to gain insight into the impact of geometric structures to the electrochemical performance of carboxylate anodes in NIBs. Among the carboxylates, disodium 2,2'-bipyridine-5,5'-dicarboxylate (2255-Na) with a planar structure outperforms the others in terms of highest specific capacity (210 mAh g-1), longest cycle life (2000 cycles), and best rate capability (up to 5 A g-1). The cyclic stability and redox mechanism of 2255-Na in NIBs are exploited by various characterization techniques. Moreover, high-temperature (up to 100 °C) and all-organic batteries based on a 2255-Na anode, a polyaniline (PANI) cathode, and an ether-based electrolyte are achieved and exhibited exceptional electrochemical performance. Therefore, this work demonstrates that designing organic carboxylates with extended planar conjugation structures is an effective strategy to achieve high-performance and sustainable NIBs.

3.
Nat Commun ; 14(1): 7448, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978171

RESUMEN

Chemical short-range-order has been widely noticed to dictate the electrochemical properties of Li-excess cation-disordered rocksalt oxides, a class of cathode based on earth abundant elements for next-generation high-energy-density batteries. Existence of short-range-order is normally evidenced by a diffused intensity pattern in reciprocal space, however, derivation of local atomic arrangements of short-range-order in real space is hardly possible. Here, by a combination of aberration-corrected scanning transmission electron microscopy, electron diffraction, and cluster-expansion Monte Carlo simulations, we reveal the short-range-order is a convolution of three basic types: tetrahedron, octahedron, and cube. We discover that short-range-order directly correlates with Li percolation channels, which correspondingly affects Li transport behavior. We further demonstrate that short-range-order can be effectively manipulated by anion doping or post-synthesis thermal treatment, creating new avenues for tailoring the electrochemical properties. Our results provide fundamental insights for decoding the complex relationship between local chemical ordering and properties of crystalline compounds.

4.
Adv Mater ; 35(51): e2306396, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37906379

RESUMEN

Cation-disordered rock salts (DRXs) are well known for their potential to realize the goal of achieving scalable Ni- and Co-free high-energy-density Li-ion batteries. Unlike in most cathode materials, the disordered cation distribution may lead to more factors that control the electrochemistry of DRXs. An important variable that is not emphasized by research community is regarding whether a DRX exists in a more thermodynamically stable form or a more metastable form. Moreover, within the scope of metastable DRXs, over-stoichiometric DRXs, which allow relaxation of the site balance constraint of a rock salt structure, are particularly underexplored. In this work, these findings are reported in locating a generally applicable approach to "metastabilize" thermodynamically stable Mn-based DRXs to metastable ones by introducing Li over-stoichiometry. The over-stoichiometric metastabilization greatly stimulates more redox activities, enables better reversibility of Li deintercalation/intercalation, and changes the energy storage mechanism. The metastabilized DRXs can be transformed back to the thermodynamically stable form, which also reverts the electrochemical properties, further contrasting the two categories of DRXs. This work enriches the structural and compositional space of DRX families and adds new pathways for rationally tuning the properties of DRX cathodes.

5.
J Am Chem Soc ; 144(43): 19838-19848, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36257295

RESUMEN

Cation-disordered rock salts (DRXs), a new class of cathode materials for Li-ion batteries, have attracted a great amount of attention in recent years due to their fascinatingly simple cubic structure, highly diverse composition, and great electrochemical performance. As cations in DRXs are randomly distributed in a long range, how the cations are spatially arranged is an intriguing question for the community of solid-state materials chemistry. In this work, we report the vibrational structure of a series of Mn- and Fe-based DRXs with well-controlled compositions and reveal significant layered-like cation ordering in the DRXs. A scheme is proposed to describe how the layered-like anisotropy could exist in rock salt structures with an overall cubic diffraction pattern. Furthermore, we raise a model of Li-ion transport based on the proposed scheme, which complements the theory of Li percolation in DRXs. The electrochemical behavior of the DRX cathodes used in the study supports the scheme and clearly demonstrates the role of layered anisotropy in the battery performance of DRXs.

7.
Artículo en Inglés | MEDLINE | ID: mdl-35130433

RESUMEN

The future of the energy industry and green transportation critically relies on exploration of high-performance, reliable, low-cost, and environmentally friendly energy storage and conversion materials. Understanding the chemical processes and phenomena involved in electrochemical energy storage and conversion is the premise of a revolutionary materials discovery. In this article, we review the recent advancements of application of state-of-the-art vibrational spectroscopic techniques in unraveling the nature of electrochemical energy, including bulk energy storage, dynamics of liquid electrolytes, interfacial processes, etc. Technique-wise, the review covers a wide range of spectroscopic methods, including classic vibrational spectroscopy (direct infrared absorption and Raman scattering), external field enhanced spectroscopy (surface enhanced Raman and IR, tip enhanced Raman, and near-field IR), and two-photon techniques (2D infrared absorption, stimulated Raman, and vibrational sum frequency generation). Finally, we provide perspectives on future directions in refining vibrational spectroscopy to contribute to the research frontier of electrochemical energy storage and conversion.

8.
ACS Appl Mater Interfaces ; 13(32): 38221-38228, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34347420

RESUMEN

Disordered rocksalt (DRX) cathodes have attracted interest due to their high capacity and compositional flexibility (e.g., Co-free chemistries). However, the sloping voltage profile and gradual capacity fade during cycling have hindered the widespread adoption of these materials. Simulations predict that fluorine substitution in DRX cathodes will improve their capacity, rate performance, and cyclability. In this study, we use a fluidized bed reactor to fluorinate a model Li-rich DRX composition (Li1.15Ni0.375Ti0.375Mo0.1O2, NTMO) to investigate how fluorine content impacts the cathode's structure and electrochemical performance. Instead of substituting O with F to form oxyfluoride phases, direct fluorination of DRX cathodes leads to the formation of LiF surface films, which improves the specific energy and capacity retention. This study demonstrates the feasibility of direct fluorination to improve the electrochemical performance of high-voltage cathodes by tuning the material's surface chemistry.

9.
Lab Invest ; 101(10): 1318-1326, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34230646

RESUMEN

In the myocardial infarction microenvironment, the effect of macrophages on the function of bone marrow mesenchymal stem cells (BMSCs) is unclear. In this study, we investigated the role of hypoxia/serum deprivation (H/SD)-induced M1-type macrophage-derived exosomes on BMSC viability, migration, and apoptosis. We found that H/SD reduced BMSC viability and migration, increased BMSC apoptosis, and induced macrophage polarization toward the M1 phenotype. BMSCs were cultured by the supernatant of H/SD-induced THP-1 cells (M1-type macrophages) with or without exosome inhibitor treatment. The results show that BMSC apoptosis is increased in the H/SD-induced THP-1 cell supernatant group and is decreased by GM4869 treatment, indicating that M1-type macrophages induce BMSC apoptosis through exosomes. In addition, we confirm that miR-222 plays an important role in promoting BMSC apoptosis by targeting B-cell lymphoma (Bcl)-2. M1-type macrophage-derived exosomes significantly decrease BMSC viability and migration and increase BMSC apoptosis, and these effects are partly abolished by a miR-222 inhibitor. Our findings suggest that under H/SD conditions, exosomes derived from M1-type macrophages can induce BMSC apoptosis by delivering miR-222 to BMSCs.


Asunto(s)
Apoptosis/fisiología , Exosomas , Macrófagos , Células Madre Mesenquimatosas , MicroARNs/metabolismo , Hipoxia de la Célula/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo
10.
Diabetol Metab Syndr ; 13(1): 15, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514420

RESUMEN

BACKGROUND: Hypertriglyceridemia (HTG) is considered an independent risk factor for major adverse cardiovascular events (MACE). METHODS: This study analyzed the effects of various agents on MACE risk reduction in HTG (serum triglyceride ≥ 150 mg/dl) populations by performing a network meta-analysis. We performed a frequentist network meta-analysis to conduct direct and indirect comparisons of interventions. PubMed, EMBASE, and the Cochrane library were searched for trials until Jul 6, 2020. Randomized controlled trials that reported MACE associated with agents in entire HTG populations or in subgroups were included. The primary outcome was MACE. RESULTS: Of the 2005 articles screened, 21 trials including 56,471 patients were included in the analysis. The network meta-analysis results for MACE risk based on frequency data showed that eicosapentaenoic acid (EPA) (OR: 1.32; 95% CI 1.19-1.46), gemfibrozil (OR: 1.53; 95% CI 1.20-1.95), niacin plus clofibrate (OR: 2.00; 95% CI 1.23-3.25), pravastatin (OR: 1.32; 95% CI 1.15-1.52), simvastatin (OR: 2.38; 95% CI 1.55-3.66), and atorvastatin (OR: 0.55; 95% CI 0.37-0.82) significantly reduced the risk of MACE compared to the control conditions. In the subgroup analysis of HTG patients with triglycerides ≥ 200 mg/dL, bezafibrate (OR: 0.56; 95% CI 0.33-0.94), EPA (OR: 0.72; 95% CI 0.62-0.82), and pravastatin (OR: 1.33; 95% CI 1.01-1.75) significantly reduced the MACE risk. CONCLUSIONS: Simvastatin had a clear advantage in reducing the risk of MACE in the entire HTG population analyzed in this meta-analysis. EPA, but not omega-3 fatty acid, was considered an effective HTG intervention. Among fibrates, gemfibrozil was most effective, though bezafibrate may significantly reduce the risk of MACE in populations with triglyceride levels of 200-300 mg/dL. Trial registration retrospectively registered in PROSPERO (CRD42020213705).

11.
Aging (Albany NY) ; 12(24): 25120-25137, 2020 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-33342766

RESUMEN

Among all diabetes mellitus-associated cardiovascular diseases, morbidity of diabetic myocardium with ischemia reperfusion injury (D-IRI) is increasing year by year. We aimed to discover a therapeutic biomarker and investigate its mechanism in D-IRI. High-fat diet and streptozotocin-induced diabetes rats were operated with IRI or sham. Recombined lentiviral vector encoding Apelin was injected into D-IRI rat via tail vein. Cardiac function, infarct size, cellular death and oxidative stress were major outcome measures. Cardiomyocyte ischemia reperfusion injury was more serious in D-IRI rats than in non-diabetes ischemia reperfusion injury (ND-IRI) rats. The secretion of NTproBNP was increased in D-IRI compared with ND-IRI. Bcl-2 expression was decreased, and Bax and cleaved caspase-3 expression was increased in D-IRI rats compared with ND-IRI rats, which were reversed after treatment with Apelin. Apelin-upregulation improved cardiomyocyte ischemia reperfusion injury and decreased NT-proBNP levels in D-IRI rats. Apelin overexpression enhanced PI3K and eNOS levels while reduced those of p38-MAPK and iNOS in D-IRI rats. Apelin overexpression protected against D-IRI through inhibiting apoptosis and oxidative stress via PI3K and p38MAPK signaling pathways in D-IRI rats. These findings provide critical new insight into understanding of Apelin's cardio-protective effects, which may become a novel therapeutic target for the diabetic IRI patients.


Asunto(s)
Apelina/genética , Apoptosis/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Daño por Reperfusión Miocárdica/genética , Estrés Oxidativo/genética , Animales , Apelina/metabolismo , Caspasa 3/metabolismo , Muerte Celular/genética , Terapia Genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Péptido Natriurético Encefálico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fragmentos de Péptidos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Proteína X Asociada a bcl-2/metabolismo
12.
Small ; 16(22): e2000656, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32363748

RESUMEN

Owing to the capacity boost from oxygen redox activities, Li-rich cation-disordered rocksalts (LRCDRS) represent a new class of promising high-energy Li-ion battery cathode materials. Redox-inactive transition-metal (TM) cations, typically d0 TM, are essential in the formation of rocksalt phases, however, their role in electrochemical performance and cathode stability is largely unknown. In the present study, the effect of two d0 TM (Nb5+ and Ti4+ ) is systematically compared on the redox chemistry of Mn-based model LRCDRS cathodes, namely Li1.3 Nb0.3 Mn0.4 O2 (LNMO), Li1.25 Nb0.15 Ti0.2 Mn0.4 O2 (LNTMO), and Li1.2 Ti0.4 Mn0.4 O2 (LTMO). Although electrochemically inactive, d0 TM serves as a modulator for oxygen redox, with Nb5+ significantly enhancing initial charge storage contribution from oxygen redox. Further studies using differential electrochemical mass spectroscopy and resonant inelastic X-ray scattering reveal that Ti4+ is better in stabilizing the oxidized oxygen anions (On - , 0 < n < 2), leading to a more reversible O redox process with less oxygen gas release. As a result, much improved chemical, structural and cycling stabilities are achieved on LTMO. Detailed evaluation on the effect of d0 TM on degradation mechanism further suggests that proper design of redox-inactive TM cations provides an important avenue to balanced capacity and stability in this newer class of cathode materials.

13.
Front Mol Biosci ; 7: 622540, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33644114

RESUMEN

Cardiovascular disease is the main disease that affects human life span. In recent years, the disease has been increasingly addressed at the molecular levels, for example, pseudogenes are now known to be involved in the pathogenesis and development of cardiovascular diseases. Pseudogenes are non-coding homologs of protein-coding genes and were once called "junk gene." Since they are highly homologous to their functional parental genes, it is somewhat difficult to distinguish them. With the development of sequencing technology and bioinformatics, pseudogenes have become readily identifiable. Recent studies indicate that pseudogenes are closely related to cardiovascular diseases. This review provides an overview of pseudogenes and their roles in the pathogenesis of cardiovascular diseases. This new knowledge adds to our understanding of cardiovascular disease at the molecular level and will help develop new biomarkers and therapeutic approaches designed to prevent and treat the disease.

14.
Nano Lett ; 19(3): 2037-2043, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30803236

RESUMEN

While Li-ion battery cathode-electrolyte interfaces (CEIs) have been extensively investigated in recent decades, accurately identifying the chemical nature and tracking the dynamics of the CEIs during electrochemical cycling still remain a grand challenge. Here we report our findings in the investigation into the dynamic evolution of the interface between a LiNi0.33Co0.33Mn0.33O2 (LNMC) cathode and an ethylene carbonate/dimethyl carbonate (EC/DMC)-based electrolyte using surface-enhanced Raman spectroscopy (SERS) performed on a model cell under typical battery operating conditions. In particular, the strong SERS activity provided by a monolayer of Au nanocubes deposited on a model LNMC electrode (additive-free) enables quasi-quantitative assessment of the CEI evolution during cycling, proving information vital to revealing the dynamics of the species adsorbed on the LNMC surface as a function of cell potential. Furthermore, our theoretical calculation, which is based on the interaction between a model interface-bound molecule and a model LNMC surface, agrees with our experimental observation. The carefully designed operando SERS platform has demonstrated high sensitivity, good surface specificity, and excellent compatibility with extensive electrochemical measurements; it is also applicable to fundamental studies of dynamic interfaces in other electrochemical energy storage and conversion systems.

15.
J Am Chem Soc ; 139(20): 7071-7081, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28441872

RESUMEN

While T-Nb2O5 has been frequently reported to display an exceptionally fast rate of Li-ion storage (similar to a capacitor), the detailed mechanism of the energy storage process is yet to be unraveled. Here we report our findings in probing the nature of the ultrafast Li-ion storage in T-Nb2O5 using both experimental and computational approaches. Experimentally, we used in operando Raman spectroscopy performed on a well-designed model cell to systematically characterize the dynamic evolution of vibrational band groups of T-Nb2O5 upon insertion and extraction of Li ions during repeated cycling. Theoretically, our model shows that Li ions are located at the loosely packed 4g atomic layers and prefer to form bridging coordination with the oxygens in the densely packed 4h atomic layers. The atomic arrangement of T-Nb2O5 determines the unique Li-ion diffusion path topologies, which allow direct Li-ion transport between bridging sites with very low steric hindrance. The proposed model was validated by computational and experimental vibrational analyses. A comprehensive comparison between T-Nb2O5 and other important intercalation-type Li-ion battery materials reveals the key structural features that lead to the exceptionally fast kinetics of T-Nb2O5 and the cruciality of atomic arrangements for designing a new generation of Li-ion conduction and storage materials.

16.
Nat Commun ; 8: 14586, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28240282

RESUMEN

Rechargeable metal-air batteries and water splitting are highly competitive options for a sustainable energy future, but their commercialization is hindered by the absence of cost-effective, highly efficient and stable catalysts for the oxygen evolution reaction. Here we report the rational design and synthesis of a double perovskite PrBa0.5Sr0.5Co1.5Fe0.5O5+δ nanofiber as a highly efficient and robust catalyst for the oxygen evolution reaction. Co-doping of strontium and iron into PrBaCo2O5+δ is found to be very effective in enhancing intrinsic activity (normalized by the geometrical surface area, ∼4.7 times), as validated by electrochemical measurements and first-principles calculations. Further, the nanofiber morphology enhances its mass activity remarkably (by ∼20 times) as the diameter is reduced to ∼20 nm, attributed to the increased surface area and an unexpected intrinsic activity enhancement due possibly to a favourable eg electron filling associated with partial surface reduction, as unravelled from chemical titration and electron energy-loss spectroscopy.

17.
Adv Sci (Weinh) ; 3(6): 1500433, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27812474

RESUMEN

In operando resonance Raman spectroscopy suggests quantitative correlation between phonon band properties and the amount of charge storage of high-energy density NiO2H x battery/pseudocapacitive material. Comparing the spectroscopic evolution using different electrolytes reveals the contributions of breaking/formation of O-H bonds and insertion/extraction of cations to electrochemical charge storage of NiO2H x .

18.
ACS Appl Mater Interfaces ; 7(44): 24622-8, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26477268

RESUMEN

Efficient utilization and broader commercialization of alternative energies (e.g., solar, wind, and geothermal) hinges on the performance and cost of energy storage and conversion systems. For now and in the foreseeable future, the combination of rechargeable batteries and electrochemical capacitors remains the most promising option for many energy storage applications. Porous carbonaceous materials have been widely used as an electrode for batteries and supercapacitors. To date, however, the highest specific capacitance of an electrochemical double layer capacitor is only ∼200 F/g, although a wide variety of synthetic approaches have been explored in creating optimized porous structures. Here, we report our findings in the synthesis of porous carbon through a simple, one-step process: direct carbonization of kelp in an NH3 atmosphere at 700 °C. The resulting oxygen- and nitrogen-enriched carbon has a three-dimensional structure with specific surface area greater than 1000 m(2)/g. When evaluated as an electrode for electrochemical double layer capacitors, the porous carbon structure demonstrated excellent volumetric capacitance (>360 F/cm(3)) with excellent cycling stability. This simple approach to low-cost carbonaceous materials with unique architecture and functionality could be a promising alternative to fabrication of porous carbon structures for many practical applications, including batteries and fuel cells.

19.
Adv Mater ; 27(35): 5171-5, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26248282

RESUMEN

3D N-doped graphene crosslinked by covalent bonds is fabricated through thermal treatment of graphene oxide with a nitrogen-contained resin. The material possesses a hierarchical porous architecture, robust mechanical stability, and abundant N-doped properties. As an electrode material for supercapacitors, this multifunctional material exhibits an unprecedented specific capacitance, high rate capability, and excellent long-term cycle stability.

20.
Nano Lett ; 15(9): 6047-50, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26302464

RESUMEN

Carbon deposition on nickel anodes degrades the performance of solid oxide fuel cells that utilize hydrocarbon fuels. Nickel anodes with BaO nanoclusters deposited on the surface exhibit improved performance by delaying carbon deposition (i.e., coking). The goal of this research was to visualize early stage deposition of carbon on nickel surface and to identify the role BaO nanoclusters play in coking resistance. Electrostatic force microscopy was employed to spatially map carbon deposition on nickel foils patterned with BaO nanoclusters. Image analysis reveals that upon propane exposure initial carbon deposition occurs on the Ni surface at a distance from the BaO features. With continued exposure, carbon deposits penetrate into the BaO-modified regions. After extended exposure, carbon accumulates on and covers BaO. The morphology and spatial distribution of deposited carbon was found to be sensitive to experimental conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA