Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Rep ; 14(1): 14375, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909068

RESUMEN

During nighttime road scenes, images are often affected by contrast distortion, loss of detailed information, and a significant amount of noise. These factors can negatively impact the accuracy of segmentation and object detection in nighttime road scenes. A cycle-consistent generative adversarial network has been proposed to address this issue to improve the quality of nighttime road scene images. The network includes two generative networks with identical structures and two adversarial networks with identical structures. The generative network comprises an encoder network and a corresponding decoder network. A context feature extraction module is designed as the foundational element of the encoder-decoder network to capture more contextual semantic information with different receptive fields. A receptive field residual module is also designed to increase the receptive field in the encoder network.The illumination attention module is inserted between the encoder and decoder to transfer critical features extracted by the encoder to the decoder. The network also includes a multiscale discriminative network to discriminate better whether the image is a real high-quality or generated image. Additionally, an improved loss function is proposed to enhance the efficacy of image enhancement. Compared to state-of-the-art methods, the proposed approach achieves the highest performance in enhancing nighttime images, making them clearer and more natural.

2.
Adv Mater ; 35(1): e2207587, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36284475

RESUMEN

With the strengthening capacity through harnessing multi-length-scale structural hierarchy, synthetic hydrogels hold tremendous promise as a low-cost and abundant material for applications demanding unprecedented mechanical robustness. However, integrating high impact resistance and high water content, yet superior softness, in a single hydrogel material still remains a grand challenge. Here, a simple, yet effective, strategy involving bidirectional freeze-casting and compression-annealing is reported, leading to a hierarchically structured hydrogel material. Rational engineering of the distinct 2D lamellar structures, well-defined nanocrystalline domains and robust interfacial interaction among the lamellae, synergistically contributes to a record-high ballistic energy absorption capability (i.e., 2.1 kJ m-1 ), without sacrificing their high water content (i.e., 85 wt%) and superior softness. Together with its low-cost and extraordinary energy dissipation capacity, the hydrogel materials present a durable alternative to conventional hydrogel materials for armor-like protection circumstances.

3.
Nat Commun ; 13(1): 4775, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999212

RESUMEN

Flexible and stretchable light emitting devices are driving innovation in myriad applications, such as wearable and functional electronics, displays and soft robotics. However, the development of flexible electroluminescent devices via conventional techniques remains laborious and cost-prohibitive. Here, we report a facile and easily-accessible route for fabricating a class of flexible electroluminescent devices and soft robotics via direct ink writing-based 3D printing. 3D printable ion conducting, electroluminescent and insulating dielectric inks were developed, enabling facile and on-demand creation of flexible and stretchable electroluminescent devices with good fidelity. Robust interfacial adhesion with the multilayer electroluminescent devices endowed the 3D printed devices with attractive electroluminescent performance. Integrated our 3D printed electroluminescent devices with a soft quadrupedal robot and sensing units, an artificial camouflage that can instantly self-adapt to the environment by displaying matching color was fabricated, laying an efficient framework for the next generation soft camouflages.

4.
Small ; 18(31): e2201796, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35801492

RESUMEN

Hydrogels have gained intensive interest in biomedical and flexible electronics, and adhesion of hydrogels to substrates or devices is indispensable in these application scenarios. Although numerous hydrogel adhesion strategies have been developed, it is still challenging to achieve a hydrogel with robust adhesion interface through a universal yet simple method. Here, a strategy for establishing strong interfacial adhesion between various hydrogels and a wide variety of substrates (i.e., soft hydrogels and rigid solids, including glass, aluminum, PET, nylon and PDMS) even under wet conditions, is reported. This strong interfacial adhesion is realized by constructing a bioinspired mineralized transition layer through ion diffusion and subsequent mineral deposition. This strategy is not only generally applicable to a broad range of substrates and ionic pairs, but also compatible with various fabrication approaches without compromising their interfacial robustnesses. This strategy is further demonstrated in the application of single-electrode triboelectric nanogenerators (TENG), where a robust interface between the hydrogel and elastomer layers is enabled to ensure a reliable signal generation and output.


Asunto(s)
Elastómeros , Hidrogeles , Fenómenos Físicos
5.
Adv Mater ; 34(8): e2107106, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34888962

RESUMEN

Engineering conventional hydrogels with muscle-like anisotropic structures can efficiently increase the fatigue threshold over 1000 J m-2 along the alignment direction; however, the fatigue threshold perpendicular to the alignment is still as low as ≈100-300 J m-2 , making them nonsuitable for those scenarios where isotropic properties are desired. Here, inspired by the distinct structure-properties relationship of heart valves, a simple yet general strategy to engineer conventional hydrogels with unprecedented yet isotropic fatigue resistance, with a record-high fatigue threshold over 1,500 J m-2 along two arbitrary in-plane directions is reported. The two-step process involves the formation of preferentially aligned lamellar micro/nanostructures through a bidirectional freeze-casting process, followed by compression annealing, synergistically contributing to extraordinary resistance to fatigue crack propagation. The study provides a viable means of fabricating soft materials with isotropically extreme properties, thereby unlocking paths to apply these advanced soft materials toward applications including soft robotics, flexible electronics, e-skins, and tissue patches.


Asunto(s)
Electrónica , Hidrogeles , Hidrogeles/química
6.
Small ; 18(7): e2106606, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34874623

RESUMEN

Designing cost-effective and high-efficiency bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) occurred at air electrodes is vitally significant yet challenging for Zn-air batteries (ZABs). In this work, a zinc substrate induced fabrication is reported of free-standing nanocarbon hybrid film which shows good bifunctional activity and can be directly used as the air electrode in the rechargeable ZABs. The designed nanocarbon film in Zn-air battery provides a satisfactory power density of 185 mW cm-2 and cycling stability for 1200 h under the current density of 10 mA cm-2 . This hybrid film also gives a solid-state ZAB excellent flexibility with a power density of 160 mW cm-2 . The free-standing hybrid with abundant cobalt-nitrogen-carbon species coupled with porous architecture would be the original factor for its satisfactory performance of rechargeable ZABs. This work would pave an ideal way to design integrated electrode with high electrocatalytic performance towards electrochemical energy technologies.

7.
Adv Mater ; 33(30): e2102011, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34110665

RESUMEN

Nature builds biological materials from limited ingredients, however, with unparalleled mechanical performances compared to artificial materials, by harnessing inherent structures across multi-length-scales. In contrast, synthetic material design overwhelmingly focuses on developing new compounds, and fails to reproduce the mechanical properties of natural counterparts, such as fatigue resistance. Here, a simple yet general strategy to engineer conventional hydrogels with a more than 100-fold increase in fatigue thresholds is reported. This strategy is proven to be universally applicable to various species of hydrogel materials, including polysaccharides (i.e., alginate, cellulose), proteins (i.e., gelatin), synthetic polymers (i.e., poly(vinyl alcohol)s), as well as corresponding polymer composites. These fatigue-resistant hydrogels exhibit a record-high fatigue threshold over most synthetic soft materials, making them low-cost, high-performance, and durable alternatives to soft materials used in those circumstances including robotics, artificial muscles, etc.

8.
Sensors (Basel) ; 20(17)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867080

RESUMEN

It is challenging to avoid obstacles safely and efficiently for multiple robots of different shapes in distributed and communication-free scenarios, where robots do not communicate with each other and only sense other robots' positions and obstacles around them. Most existing multi-robot collision avoidance systems either require communication between robots or require expensive movement data of other robots, like velocities, accelerations and paths. In this paper, we propose a map-based deep reinforcement learning approach for multi-robot collision avoidance in a distributed and communication-free environment. We use the egocentric local grid map of a robot to represent the environmental information around it including its shape and observable appearances of other robots and obstacles, which can be easily generated by using multiple sensors or sensor fusion. Then we apply the distributed proximal policy optimization (DPPO) algorithm to train a convolutional neural network that directly maps three frames of egocentric local grid maps and the robot's relative local goal positions into low-level robot control commands. Compared to other methods, the map-based approach is more robust to noisy sensor data, does not require robots' movement data and considers sizes and shapes of related robots, which make it to be more efficient and easier to be deployed to real robots. We first train the neural network in a specified simulator of multiple mobile robots using DPPO, where a multi-stage curriculum learning strategy for multiple scenarios is used to improve the performance. Then we deploy the trained model to real robots to perform collision avoidance in their navigation without tedious parameter tuning. We evaluate the approach with multiple scenarios both in the simulator and on four differential-drive mobile robots in the real world. Both qualitative and quantitative experiments show that our approach is efficient and outperforms existing DRL-based approaches in many indicators. We also conduct ablation studies showing the positive effects of using egocentric grid maps and multi-stage curriculum learning.

9.
Virol J ; 9: 202, 2012 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-22978358

RESUMEN

BACKGROUND: Bovine herpesvirus type 1 (BHV-1) is an important pathogen in cattle that is responsible for substantial economic losses. Previous studies suggest that BHV-1 may induce apoptosis in Madin-Darby bovine kidney (MDBK) cells via a mechanism only involving caspases and p53. However, the mechanism for BHV-1-induced MDBK cell apoptosis still requires more research. METHODS: MDBK was used as a model to study the precise signaling pathways of apoptosis induced by BHV-1 infection. RESULTS: BHV-1 infection activated a Fas/FasL-mediated apoptotic pathway, resulting in activation of caspase-8 and cleavage of Bid. In addition, BHV-1 infection down-regulated Bcl-2 and up-regulated Bax expression, thereby initiating the release of cytochrome c followed by caspase-9 activation. The combined activation of the extrinsic and intrinsic pathways resulted in activation of downstream effecter caspase-3 and poly ADP-ribose polymerase (PARP), leading to apoptosis. Furthermore, blocking apoptosis using caspase inhibitors improved BHV-1-infected MDBK cell viability to different extent. BHV-1 infection did not induce significant DNA fragmentation in MDBK cells pretreated with ammonium chloride (NH4Cl) or cells infected with UV-inactivated BHV-1. Blocking caspases activation increased BHV-1 replication. CONCLUSIONS: BHV-1 induces apoptosis in MDBK cells through extrinsic and intrinsic pathways and there might be cross-talk between the two pathways. In addition, BHV-1 replication may be necessary for the induction of apoptosis in BHV-1-infected cells, and prolonged cell viability benefits BHV-1 replication.


Asunto(s)
Apoptosis , Herpesvirus Bovino 1/fisiología , Mitocondrias/metabolismo , Receptor fas/metabolismo , Animales , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Caspasa 9/metabolismo , Bovinos , Línea Celular , Citocromos c/metabolismo , Activación Enzimática , Proteína Ligando Fas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Replicación Viral
10.
J Virol Methods ; 183(1): 69-74, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22575688

RESUMEN

Uniplex and multiplex reverse transcription-polymerase chain reaction (RT-PCR) and PCR protocols were developed and evaluated subsequently for its effectiveness in detecting simultaneously single and mixed infections in swine. Specific primers for three DNA viruses and three RNA viruses, including classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), Japanese encephalitis virus (JEV), porcine circovirus type 2 (PCV2), porcine pseudorabies virus (PRV) and porcine parvovirus (PPV) were used for testing procedure. A single nucleic acid extraction protocol was adopted for the simultaneous extraction of both RNA and DNA viruses. The multiplex PCR consisted with two-step procedure which included reverse transcription of RNA virus and multiplex PCR of viral cDNA and DNA. The multiplex PCR assay was shown to be sensitive detecting at least 450pg of viral genomic DNA or RNA from a mixture of six viruses in a reaction. The assay was also highly specific in detecting one or more of the same viruses in various combinations in specimens. Thirty clinical samples and aborted fetuses collected from 4- to 12-week-old piglets were detected among 39 samples tested by both uniplex and multiplex PCR, showing highly identification. Because of the sensitivity and specificity, the multiplex PCR is a useful approach for clinical diagnosis of mixed infections of DNA and RNA viruses in swine.


Asunto(s)
Infecciones por Virus ADN/veterinaria , Virus ADN/aislamiento & purificación , Reacción en Cadena de la Polimerasa Multiplex/métodos , Infecciones por Virus ARN/veterinaria , Virus ARN/aislamiento & purificación , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/virología , Animales , Coinfección/diagnóstico , Coinfección/veterinaria , Coinfección/virología , Cartilla de ADN/genética , Infecciones por Virus ADN/diagnóstico , Infecciones por Virus ADN/virología , Virus ADN/genética , Infecciones por Virus ARN/diagnóstico , Infecciones por Virus ARN/virología , Virus ARN/genética , Sensibilidad y Especificidad , Porcinos , Medicina Veterinaria/métodos , Virología/métodos
11.
Vet Microbiol ; 158(1-2): 12-22, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22341312

RESUMEN

Transmissible gastroenteritis virus (TGEV) has been reported to induce apoptosis in swine testis (ST) cells. However, the mechanisms underlying TGEV-induced apoptosis are still unclear. In this study we observed that TGEV infection induced apoptosis in porcine kidney (PK-15) cells in a time- and dose-dependent manner. TGEV infection up-regulated FasL, activated FasL-mediated apoptotic pathway, leading to activation of caspase-8 and cleavage of Bid. In addition, TGEV infection down-regulated Bcl-2, up-regulated Bax expression, promoted translocation of Bax to mitochondria, activated mitochondria-mediated apoptotic pathway, which in turn caused the release of cytochrome c and the activation of caspase-9. Both extrinsic and intrinsic pathways activated downstream effector caspase-3, followed by the cleavage of PARP, resulting in cell apoptosis. Moreover, TGEV infection did not induce significant DNA fragmentation in ammonium chloride (NH(4)Cl) pretreated PK-15 cells or cells infected with UV-inactivated TGEV. In turn, block of caspases activation also did not affect TGEV replication. Taken together, this study demonstrates that TGEV-induced apoptosis is dependent on viral replication in PK-15 cells and occurs through activation of FasL- and mitochondria-mediated apoptotic pathways.


Asunto(s)
Apoptosis , Proteína Ligando Fas/metabolismo , Gastroenteritis Porcina Transmisible/metabolismo , Gastroenteritis Porcina Transmisible/virología , Mitocondrias/metabolismo , Virus de la Gastroenteritis Transmisible/fisiología , Animales , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Línea Celular , Porcinos , Proteína X Asociada a bcl-2/metabolismo , Receptor fas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA