Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Int J Mol Sci ; 25(20)2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39456739

RESUMEN

Lipoxygenases (LOXs) from lower organisms have substrate flexibility and function versatility in fatty acid oxidation, but it is not clear how these LOXs acquired the ability to execute multiple functions within only one catalytic domain. This work studied a multifunctional LOX from red alga Pyropia haitanensis (PhLOX) which combined hydroperoxidelyase (HPL) and allene oxide synthase (AOS) activity in its active pocket. Molecular docking and site-directed mutagenesis revealed that Phe642 and Phe826 jointly regulated the double peroxidation of fatty acid, Gln777 and Asn575 were essential to the AOS function, and the HPL activity was improved when Asn575, Gln777, or Phe826 was replaced by leucine. Phylogenetic analysis indicated that Asn575 and Phe826 were unique amino acid sites in the separated clades clustered with PhLOX, whereas Phe642 and Gln777 were conserved in plant or animal LOXs. The N-terminal START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) domain of PhLOX was another key variable, as the absence of this domain disrupted the versatility of PhLOX. Moreover, the functions of two homologous LOXs from marine bacterium Shewanella violacea and red alga Chondrus crispus were examined. The HPL activity of PhLOX appeared to be inherited from a common ancestor, and the AOS function was likely acquired through mutations in some key residues in the active pocket. Taken together, our results suggested that some LOXs from red algae attained their versatility by amalgamating functional domains of ancestral origin and unique amino acid mutations.


Asunto(s)
Evolución Molecular , Lipooxigenasa , Filogenia , Rhodophyta , Rhodophyta/genética , Rhodophyta/enzimología , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Lipooxigenasa/química , Secuencia de Aminoácidos , Simulación del Acoplamiento Molecular , Shewanella/enzimología , Shewanella/genética , Mutagénesis Sitio-Dirigida
2.
Commun Biol ; 7(1): 955, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112633

RESUMEN

Similar to the physiological importance of gut microbiomes, recent works have shown that insect ectomicrobiotas can mediate defensive colonization resistance against fungal parasites that infect via cuticle penetration. Here we show that engineering the entomopathogenic fungus Metarhizium robertsii with a potent antibacterial moricin gene from silkworms substantially enhances the ability of the fungus to kill mosquitos, locusts, and two Drosophila species. Further use of Drosophila melanogaster as an infection model, quantitative microbiome analysis reveals that engineered strains designed to suppress insect cuticular bacteria additionally disrupt gut microbiomes. An overgrowth of harmful bacteria such as the opportunistic pathogens of Providencia species is detected that can accelerate insect death. In support, quantitative analysis of antimicrobial genes in fly fat bodies and guts indicates that topical fungal infections result in the compromise of intestinal immune responses. In addition to providing an innovative strategy for improving the potency of mycoinsecticides, our data solidify the importance of both the ecto- and endo-microbiomes in maintaining insect wellbeing.


Asunto(s)
Metarhizium , Animales , Metarhizium/genética , Drosophila melanogaster/microbiología , Drosophila melanogaster/genética , Bombyx/microbiología , Bombyx/genética , Control Biológico de Vectores/métodos , Microbioma Gastrointestinal
3.
J Phycol ; 60(4): 942-955, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39016211

RESUMEN

Neoporphyra haitanensis, a red alga harvested for food, thrives in the intertidal zone amid dynamic and harsh environments. High irradiance represents a major stressor in this habitat, posing a threat to the alga's photosynthetic apparatus. Interestingly, N. haitanensis has adapted to excessive light despite the absence of a crucial xanthophyll cycle-dependent photoprotection pathway. Thus, it is valuable to investigate the mechanisms by which N. haitanensis copes with excessive light and to understand the photoprotective roles of carotenoids. Under high light intensities and prolonged irradiation time, N. haitanensis displayed reduction in photosynthetic efficiency and phycobiliproteins levels, as well as different responses in carotenoids. The decreased carotene contents suggested their involvement in the synthesis of xanthophylls, as evidenced by the up-regulation of lycopene-ß-cyclase (lcyb) and zeaxanthin epoxidase (zep) genes. Downstream xanthophylls such as lutein, zeaxanthin, and antheraxanthin increased proportionally to light stress, potentially participating in scavenging reactive oxygen species (ROS). When accompanied by the enhanced activity of ascorbate peroxidase (APX), these factors resulted in a reduction in ROS production. The responses of intermediates α-cryptoxanthin and ß-cryptoxanthin were felt somewhere between carotenes and zeaxanthin/lutein. Furthermore, these changes were ameliorated when the organism was placed in darkness. In summary, down-regulation of the organism's photosynthetic capacity, coupled with heightened xanthophylls and APX activity, activates photoinhibition quenching (qI) and antioxidant activity, helping N. haitanensis to protect the organism from the damaging effects of excessive light exposure. These findings provide insights into how red algae adapt to intertidal lifestyles.


Asunto(s)
Carotenoides , Luz , Fotosíntesis , Rhodophyta , Rhodophyta/fisiología , Rhodophyta/metabolismo , Carotenoides/metabolismo , Xantófilas/metabolismo , Estrés Fisiológico
4.
Food Chem ; 460(Pt 1): 140468, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053276

RESUMEN

Porphyra sensu lato, a highly valuable edible seaweed renowned for its distinctive umami taste, undergoes significant taste variations during the harvest cycle, affecting product quality and pricing. In this study, umami-related metabolites in Pyropia haitanensis were investigated at different harvesting times using GC-MS metabolomic, targeted LC-MS analysis, and an electronic tongue taste evaluation. High concentrations of compounds, including glutamic acid, aspartic acid, and inosine 5'-monophosphate, were identified as the main contributors to the overall umami profile. The concentrations of the compounds and umami-enhancing substances, such as sugars, were negatively correlated as the harvesting period extended. The early harvested P. haitanensis exhibited a superior umami taste, which gradually decreased with subsequent harvest time. Proline, a known cold-resistance metabolite, accumulated as the seawater temperature decreased and the harvest period progressed. These findings provide insights into the optimal cultivation and harvesting practices for maintaining umami quality in P. haitanensis products.


Asunto(s)
Metabolómica , Gusto , Humanos , Masculino , Adulto , Cromatografía de Gases y Espectrometría de Masas , Femenino , Porphyra/química , Porphyra/metabolismo , Porphyra/crecimiento & desarrollo , Algas Marinas/metabolismo , Algas Marinas/química , Algas Marinas/crecimiento & desarrollo , Adulto Joven , Aromatizantes/metabolismo , Aromatizantes/química
5.
J Colloid Interface Sci ; 674: 1025-1036, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39002291

RESUMEN

Non-invasive and efficient photodynamic therapy (PDT) holds great promise to circumvent resistance to traditional osteosarcoma (OS) treatments. Nevertheless, high-power PDT applied in OS often induces photothermogenesis, resulting in normal cells rupture, sustained inflammation and irreversible vascular damage. Despite its relative safety, low-power PDT fails to induce severe DNA damage for insufficient reactive oxygen species (ROS) production. Herein, a non-ROS-dependent DNA damage-sensitizing strategy is introduced in low-power PDT to amplify the therapeutic efficiency of OS, where higher apoptosis is achieved with low laser power. Inspired by the outstanding DNA damage performance of tannic acid (TA), TA-based metal phenolic networks (MPNs) are engineered to encapsulate hydrophobic photosensitizer (purpurin 18) to act as DNA damage-sensitized nanosynergists (TCP NPs). Specially, under low-power laser irradiation, the TCP NPs can boost ROS instantly to trigger mitochondrial dysfunction simultaneously with upregulation of DNA damage levels triggered by TA to reinforce PDT sensitization, evoking potent antitumor effects. In addition, TCP NPs exhibit long-term retention in tumor, greatly benefiting sustained antitumor performances. Overall, this study sheds new light on promoting the sensitivity of low-power PDT by strengthening DNA damage levels and will benefits advanced OS therapy.


Asunto(s)
Daño del ADN , Osteosarcoma , Fotoquimioterapia , Fármacos Fotosensibilizantes , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Osteosarcoma/terapia , Daño del ADN/efectos de los fármacos , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Neoplasias Óseas/terapia , Neoplasias Óseas/metabolismo , Tamaño de la Partícula , Propiedades de Superficie , Taninos/química , Taninos/farmacología , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Fenoles/química , Fenoles/farmacología , Apoptosis/efectos de los fármacos , Nanopartículas/química
6.
BMC Plant Biol ; 24(1): 409, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760736

RESUMEN

BACKGROUND: Bletilla striata (Thunb.) Reichb. f. (B. striata) is a perennial herbaceous plant in the Orchidaceae family known for its diverse pharmacological activities, such as promoting wound healing, hemostasis, anti-inflammatory effects, antioxidant properties, and immune regulation. Nevertheless, the microbe-plant-metabolite regulation patterns for B. striata remain largely undetermined, especially in the field of rhizosphere microbes. To elucidate the interrelationships between soil physics and chemistry and rhizosphere microbes and metabolites, a comprehensive approach combining metagenome analysis and targeted metabolomics was employed to investigate the rhizosphere soil and tubers from four provinces and eight production areas in China. RESULTS: Our study reveals that the core rhizosphere microbiome of B. striata is predominantly comprised of Paraburkholderia, Methylibium, Bradyrhizobium, Chitinophaga, and Mycobacterium. These microbial species are recognized as potentially beneficial for plants health. Comprehensive analysis revealed a significant association between the accumulation of metabolites, such as militarine and polysaccharides in B. striata and the composition of rhizosphere microbes at the genus level. Furthermore, we found that the soil environment indirectly influenced the metabolite profile of B. striata by affecting the composition of rhizosphere microbes. Notably, our research identifies soil organic carbon as a primary driving factor influencing metabolite accumulation in B. striata. CONCLUSION: Our fndings contribute to an enhanced understanding of the comprehensive regulatory mechanism involving microbe-plant-metabolite interactions. This research provides a theoretical basis for the cultivation of high-quality traditional Chinese medicine B. striata.


Asunto(s)
Microbiota , Orchidaceae , Rizosfera , Microbiología del Suelo , Orchidaceae/microbiología , Orchidaceae/metabolismo , China , Tubérculos de la Planta/microbiología , Tubérculos de la Planta/metabolismo
7.
Front Plant Sci ; 15: 1379428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533401

RESUMEN

The Bangiales represent an ancient lineage within red algae that are characterized by a life history featuring a special transitional stage from diploid to haploid known as the conchosporangia stage. However, the regulatory mechanisms governing the initiation of this stage by changes in environmental conditions are not well understood. This study analyzed the changes in phytohormones and H2O2 content during the development of conchosporangia. It also compared the gene expression changes in the early development of conchosporangia through transcriptome analysis. The findings revealed that H2O2 was shown to be the key signal initiating the transition from conchocelis to conchosporangia in Pyropia haitanensis. Phytohormone analysis showed a significant increase in 1-aminocylopropane-1-carboxylic acid (ACC) levels during conchosporangia maturation, while changes in environmental conditions were found to promote the rapid release of H2O2. H2O2 induction led to conchosporangia development, and ACC enhanced both H2O2 production and conchosporangia development. This promotive effect was inhibited by the NADPH oxidase inhibitor diphenylene iodonium and the H2O2 scavenger N, N'-dimethylthiourea. The balance of oxidative-antioxidative mechanisms was maintained by regulating the activities and transcriptional levels of enzymes involved in H2O2 production and scavenging. Transcriptome analysis in conjunction with evaluation of enzyme and transcription level changes revealed upregulation of protein and sugar synthesis along with modulation of energy supply under the conditions that induced maturation, and exogenous ACC was found to enhance the entire process. Overall, this study demonstrates that ACC enhances H2O2 promotion of the life cycle switch responsible for the transition from a vegetative conchocelis to a meiosis-preceding conchosporangia stage in Bangiales species.

8.
Microbiome ; 12(1): 40, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409012

RESUMEN

BACKGROUND: Bacterial transfers from plants to insect herbivore guts have been well investigated. However, bacterial exchanges between plant phyllospheres and insect cuticles remain unclear, as does their related biological function. RESULTS: Here, we report that the cuticular bacterial loads of silkworm larvae quickly increased after molting and feeding on the white mulberry (Morus alba) leaves. The isolation and examination of silkworm cuticular bacteria identified one bacterium Mammaliicoccus sciuri that could completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana. Interestingly, Ma. sciuri was evident originally from mulberry leaves, which could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls. In consistency, the deletion of Msp1 substantially impaired bacterial antifungal activity. Pretreating silkworm larvae with Ma. sciuri cells followed by fungal topical infections revealed that this bacterium could help defend silkworms against fungal infections. Unsurprisingly, the protective efficacy of ΔMsp1 was considerably reduced when compared with that of wild-type bacterium. Administration of bacterium-treated diets had no negative effect on silkworm development; instead, bacterial supplementation could protect the artificial diet from Aspergillus contamination. CONCLUSIONS: The results of this study evidence that the cross-kingdom transfer of bacteria from plant phyllospheres to insect herbivore cuticles can help protect insects against fungal parasite attacks. Video Abstract.


Asunto(s)
Bombyx , Morus , Parásitos , Animales , Bombyx/microbiología , Antifúngicos/farmacología , Morus/parasitología , Proteína 1 de Superficie de Merozoito , Insectos , Bacterias , Larva/microbiología
9.
BMC Microbiol ; 24(1): 24, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238710

RESUMEN

BACKGROUND: Although stag beetles are a popular saprophytic insect, their gut microbiome has been poorly studied. Here, 16 S rRNA gene sequencing was employed to reveal the gut microbiota composition and functional variations between wild and domestic Dorcus hopei hopei (Dhh) larval individuals. RESULTS: The results indicated a significant difference between the wild and domestic Dhh gut microbiota., the domestic Dhh individuals contained more gut microbial taxa (e.g. genera Ralstonia and Methyloversatilis) with xenobiotic degrading functions. The wild Dhh possesses gut microbiota compositions (e.g. Turicibacter and Tyzzerella ) more appropriate for energy metabolism and potential growth. This study furthermore assigned all Dhh individuals by size into groups for data analysis; which indicated limited disparities between the gut microbiota of different-sized D. hopei hopei larvae. CONCLUSION: The outcome of this study illustrated that there exists a significant discrepancy in gut microbiota composition between wild and domestic Dhh larvae. In addition, the assemblage of gut microbiome in Dhh was primarily attributed to environmental influences instead of individual differences such as developmental potential or size. These findings will provide a valuable theoretical foundation for the protection of wild saprophytic insects and the potential utilization of the insect-associated intestinal microbiome in the future.


Asunto(s)
Escarabajos , Microbioma Gastrointestinal , Animales , Escarabajos/genética , Microbioma Gastrointestinal/genética , Larva , ARN Ribosómico 16S/genética
10.
Gene ; 899: 148094, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38142897

RESUMEN

Salvia miltiorrhiza, a prominent traditional Chinese medicinal resource, has been extensively employed in the management of cardiovascular and cerebrovascular ailments. Ensuring the consistency of S. miltiorrhiza raw materials revolves around the imperative task of maintaining stable tanshinones content and composition. An effective approach in this regard involves the utilization of endophytic fungi as inducers. Within this context, our study spotlights an endophytic fungus, Penicillium steckii DF33, isolated from the roots of S. miltiorrhiza. Remarkably, this fungus has demonstrated a significant capacity to boost the biosynthesis and accumulation of tanshinones. The primary objective of this investigation is to elucidate the underlying regulatory mechanism by which DF33 enhances and regulates the biosynthesis and accumulation of tanshinones. This is achieved through its influence on the differential expression of crucial CYP450 genes within the S. miltiorrhiza hairy roots system. The results revealed that the DF33 elicitor not only promotes the growth of hairy roots but also enhances the accumulation of tanshinones. Notably, the content of cryptotanshinone was reached 1.6452 ± 0.0925 mg g-1, a fourfold increase compared to the control group. Our qRT-PCR results further demonstrate that the DF33 elicitor significantly up-regulates the expression of most key enzyme genes (GGPPS, CPS1, KSL1, CYP76AH1, CYP76AH3, CYP76AK1, CYP71D411) involved in the tanshinone biosynthesis pathway. This effect is particularly pronounced in certain critical CYP450 genes and Tanshinone ⅡA synthase (SmTⅡAS), with their expression levels peaking at 7 days or 14 days, respectively. In summary, endophytic P. steckii DF33 primarily enhances tanshinone biosynthesis by elevating the expression levels of pivotal enzyme genes associated with the modification and transformation stages within the tanshinone biosynthesis pathway. These findings underscore the potential of employing plant probiotics, specifically endophytic and root-associated microbes, to facilitate the biosynthesis and transformation of vital constituents in medicinal plants, and this approach holds promise for enhancing the quality of traditional Chinese medicinal materials.


Asunto(s)
Penicillium , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Abietanos , Hongos , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
11.
AMB Express ; 13(1): 128, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37975935

RESUMEN

Disease is a major concern in Porphyra aquaculture, particularly during the early shell-borne conchocelis (SBC) seedling stage. To explore prevention strategies for Porphyra diseases, this study explored the potential of using oligoagars (OA) and microbial agents (MA) to treat SBC of Neoporphyra haitanensis in an aquaculture environment. The impact of these treatments on the phycosphere microbial community was analyzed, and the resistance of the treated Porphyra conchocelis to the pathogenic bacterium Vibrio mediterranei 117-T6 (which causes yellow spot disease) was tested in the lab. Results showed that OA reduced α-diversity while enriching Rhodobacteriaceae, and MA increased stability and relative abundance of Bacteroidetes (including Flavobacteria). Furthermore, compared to the control group, the abundance of pathogenic microorganisms and virulence functional genes decreased while defense-related functional gene abundance increased significantly in the groups treated with OA and MA. Most importantly, the OA and MA treatments improved resistance to Vm117-T6, with survival rates of 70% (OA) and 80% (MA), compared to 15% in the control group. Overall, the findings suggest that OA and MA treatments have great potential for preventing Porphyra disease, as they improve phycosphere microorganisms and increase algae resistance to pathogenic bacteria.

12.
Front Microbiol ; 14: 1258415, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808288

RESUMEN

The biofilm lifestyle is critical for bacterial survival and proliferation in the fluctuating marine environment. Cyclic diguanylate (c-di-GMP) is a key second messenger during bacterial adaptation to various environmental signals, which has been identified as a master regulator of biofilm formation. However, little is known about whether and how c-di-GMP signaling regulates biofilm formation in Vibrio alginolyticus, a globally dominant marine pathogen. Here, a large set of 63 proteins were predicted to participate in c-di-GMP metabolism (biosynthesis or degradation) in a pathogenic V. alginolyticus strain HN08155. Guided by protein homology, conserved domains and gene context information, a representative subset of 22 c-di-GMP metabolic proteins were selected to determine which ones affect biofilm-associated phenotypes. By comparing phenotypic differences between the wild-type and mutants or overexpression strains, we found that 22 c-di-GMP metabolic proteins can separately regulate different phenotypic outputs in V. alginolyticus. The results indicated that overexpression of four c-di-GMP metabolic proteins, including VA0356, VA1591 (CdgM), VA4033 (DgcB) and VA0088, strongly enhanced rugose colony morphotypes and strengthened Congo Red (CR) binding capacity, both of which are indicators of biofilm matrix overproduction. Furthermore, rugose enhanced colonies were accompanied by increased transcript levels of extracellular polysaccharide (EPS) biosynthesis genes and decreased expression of flagellar synthesis genes compared to smooth colonies (WTpBAD control), as demonstrated by overexpression strains WTp4033 and ∆VA4033p4033. Overall, the high abundance of c-di-GMP metabolic proteins in V. alginolyticus suggests that c-di-GMP signaling and regulatory system could play a key role in its response and adaptation to the ever-changing marine environment. This work provides a robust foundation for the study of the molecular mechanisms of c-di-GMP in the biofilm formation of V. alginolyticus.

13.
Front Endocrinol (Lausanne) ; 14: 1206154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745718

RESUMEN

Backgrounds: Diabetes nephropathy (DN) is a growing public health concern worldwide. Renal dysfunction impairment in DN is intimately linked to ER stress and its related signaling pathways. Nonetheless, the underlying mechanism and biomarkers for this function of ER stress in the DN remain unknown. Methods: Microarray datasets were retrieved from the Gene Expression Omnibus (GEO) database, and ER stress-related genes (ERSRGs) were downloaded from the MSigDB and GeneCards database. We identified hub ERSRGs for DN progression by intersecting ERSRGs with differentially expressed genes and significant genes in WGCNA, followed by a functional analysis. After analyzing hub ERSRGs with three machine learning techniques and taking the intersection, we did external validation as well as developed a DN diagnostic model based on the characteristic genes. Immune infiltration was performed using CIBERSORT. Moreover, patients with DN were then categorized using a consensus clustering approach. Eventually, the candidate ERSRGs-specific small-molecule compounds were defined by CMap. Results: Several biological pathways driving pathological injury of DN and disordered levels of immune infiltration were revealed in the DN microarray datasets and strongly related to deregulated ERSRGs by bioinformatics multi-chip integration. Moreover, CDKN1B, EGR1, FKBP5, GDF15, and MARCKS were identified as ER stress signature genes associated with DN by machine learning algorithms, demonstrating their potential as DN biomarkers. Conclusions: Our research sheds fresh light on the function of ER stress in DN pathophysiology and the development of early diagnostic and ER stress-related treatment targets in patients with DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Receptores de Estrógenos , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/genética , Biomarcadores , Biología Computacional , Estrés del Retículo Endoplásmico/genética , Aprendizaje Automático
14.
Chin Herb Med ; 15(3): 376-382, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37538858

RESUMEN

Ganoderma lucidum is a valuable medical macrofungus with a myriad of diverse secondary metabolites, in which triterpenoids are the major constituents. This paper introduced the germplasm resources of genus Ganoderma from textual research, its distribution and identification at the molecular level. Also we overviewed G. lucidum in the components, the biological activities and biosynthetic pathways of ganoderic acid, aiming to provide scientific evidence for the development and utilization of G. lucidum germplasm resources and the biosynthesis of ganoderic acid.

15.
Nutrients ; 15(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37432179

RESUMEN

Gastric carcinoma is a frequently detected malignancy worldwide, while its mainstream drugs usually result in some adverse reactions, including immunosuppression. λ-carrageenan oligosaccharides (COS) have attracted increasing attention as potential anticancer agents due to their ability to enhance immune function. Our current work assessed the antitumor mechanism of λ-COS using BGC-823 cells. Our findings indicated that λ-COS alone did not have a significant impact on BGC-823 cells in vitro; however, it was effective in inhibiting tumor growth in vivo. When THP-1 cells were pre-incubated with λ-COS and used to condition the medium, BGC-823 cells in vitro displayed a concentration-dependent induction of cell apoptosis, nuclear damage, and the collapse of mitochondrial transmembrane potential. These findings suggested that the antineoplastic effect of λ-COS was primarily due to its immunoenhancement property. Treatment with λ-COS was found to significantly enhance the phagocytic capability of macrophages, increase the secretion of TNF-α and IFN-γ, and improve the indexes of spleen and thymus in BALB/c mice. In addition, λ-COS was found to inhibit the growth of BGC-823-derived tumors in vitro by activating the Par-4 signaling pathway, which may be stimulated by the combination of TNF-α and IFN-γ. When used in combination with 5-FU, λ-COS demonstrated enhanced anti-gastric carcinoma activity and improved the immunosuppression induced by 5-FU alone. These findings suggested that λ-COS could be used as an immune-modulating agent for chemotherapy.


Asunto(s)
Carcinoma , Neoplasias Gástricas , Animales , Ratones , Carragenina , Factor de Necrosis Tumoral alfa , Inmunomodulación , Neoplasias Gástricas/tratamiento farmacológico , Inmunidad , Fluorouracilo
16.
Curr Opin Microbiol ; 74: 102336, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37320866

RESUMEN

Fungus-insect interactions have long been investigated at the bilateral level to unveil the factors involved in mediating fungal entomopathogenicity and insect antifungal immunity. Emerging evidence has shown that insect cuticles are inhabited by different bacteria that can delay and deter fungal parasite infections. Entomopathogenic fungi (EPF), however, have evolved strategies to combat the colonization resistance mediated by insect ectomicrobiomes by producing antimicrobial peptides or antibiotic compounds. Deprivation of micronutrients may also be employed by EPF to counteract the ectomicrobiome antagonism. Further investigations of insect ectomicrobiome assemblage and fungal factors involved in outcompeting cuticular microbiomes may benefit the development of cost-effective mycoinsecticides while protecting ecologically and economically important insect species.


Asunto(s)
Micosis , Parásitos , Animales , Insectos/microbiología , Antifúngicos , Hongos/genética
17.
Front Oncol ; 13: 1185991, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284198

RESUMEN

Background/objective: We retrospectively analyzed the effective and safety of continuous low-dose cyclophosphamide combined with prednisone (CP) in relapsed and refractory multiple myeloma (RRMM) patients with severe complications. Methods: A total of 130 RRMM patients with severe complications were enrolled in this study, among which 41 patients were further given bortezomib, lenalidomide, thalidomide or ixazomib on the basis of CP regimen (CP+X group). The response to therapy, adverse events (AEs), overall survival (OS) and progression-free survival (PFS) were recorded. Results: Among the 130 patients, 128 patients received therapeutic response assessment, with a complete remission rate (CRR) and objective response rate (ORR) of 4.7% and 58.6%, respectively. The median OS and PFS time were (38.0 ± 3.6) and (22.9±5.2) months, respectively. The most common AEs were hyperglycemia (7.7%), pneumonia (6.2%) and Cushing's syndrome (5.4%). In addition, we found the pro-BNP/BNP level was obviously decreased while the LVEF (left ventricular ejection fraction) was increased in RRMM patients following CP treatment as compared with those before treatment. Furthermore, CP+X regimen further improved the CRR compared with that before receiving the CP+X regimen (24.4% vs. 2.4%, P=0.007). Also, both the OS and PFS rates were significantly elevated in patients received CP+X regimen following CP regimen as compared with the patients received CP regimen only. Conclusion: This study demonstrates the metronomic chemotherapy regimen of CP is effective to RRMM patients with severe complications.

18.
Hematology ; 28(1): 2225342, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37343159

RESUMEN

BACKGROUND: Although multiple myeloma is still incurable, an abundance of novel treatments have become available for relapsed and or refractory multiple myeloma (RRMM). Direct head-to-head comparisons between the novel treatments are lacking. We performed a network meta-analysis to evaluate immediate effects such as response quality of current novel-drugs combined therapeutic regimens, with the aim to identify treatments that could be more effective than others in RRMM. METHODS: We searched Cochrane Library, PubMed, Embase, and Web of Science for randomized controlled clinical trials receiving novel-drugs combined treatments as means of interventions. The primary endpoint was objective response rates (ORRs). We used the surface under the cumulative ranking curve (SUCRA) to sequence treatments. Totally, 22 randomized controlled trials were identified for final evaluation. With the aim to include all regimens within one network analysis, we divided the treatment schemes into 13 categories according to the use of novel drugs. RESULTS: Carfilzomib-, daratumumab-, and isatuximab-based treatments had better ORRs than bortezomib combined dexamethasone and lenalidomide combined dexamethasone. Daratumumab- and isatuximab-based treatments had better ORRs than pomalidomide combined dexamethasone. According to the SUCRA, daratumumab- and isatuximab-based triple-drug regimens had higher probabilities of achieving better ORRs, followed by carfilzomib, elotuzumab, venetoclax, selinexor, ixazomib, vorinostat, pomalidomide, panobinostat, lenalidomide. CONCLUSIONS: Our network meta-analysis performed a complete review of the ORRs of all current available novel-drugs based regimens for RRMM. By using the clinical data all from randomized controlled studies, daratumumab- and isatuximab-based treatments were identified to be the best treatments receiving better response quality.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Lenalidomida/uso terapéutico , Metaanálisis en Red , Bortezomib/uso terapéutico , Dexametasona/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
19.
Hematology ; 28(1): 2177979, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36794720

RESUMEN

OBJECTIVE: Gain or amplification 1q21 (1q21+) is one of the most common recurrent cytogenetic abnormalities in multiple myeloma (MM). Our aim was to explore the presentation and outcomes of patients with MM harboring 1q21 + . METHODS: We retrospectively analyzed the clinical features and survival outcomes in 474 consecutive patients with MM receiving immunomodulatory drugs or proteasome inhibitor-based regimens as first-line therapies. RESULTS: 1q21 + was detected in 249 (52.5%) patients. Patients with 1q21 + had a higher proportion of subtypes of IgA, IgD, and λ-light chain than non-1q21 + . 1q21 + was associated with more advanced ISS stage and was more frequently accompanied by del(13q), elevated lactate dehydrogenase and lower levels of hemoglobin and platelets. Patients with 1q21 + had shorter PFS (21 months vs. 31 months, P = 0.001) and OS (43 months vs. 72 months, P < 0.001) than those without 1q21 + . Multivariate Cox regression analysis confirmed that 1q21 + was an independent prognostic factor for both PFS (HR 1.277, P = 0.031) and OS (HR 1.547, P = 0.003). Patients with 1q21 + del(13q) double-abnormality had shorter PFS (P < 0.001) and OS (P = 0.001) than those with no FISH abnormalities, and they also had shorter PFS (P = 0.018) and OS (P = 0.026) than those with del(13q) single abnormality. No significant difference in PFS (P = 0.525) or OS (P = 0.245) was found between patients with 1q21 + del(13q) double-abnormality and 1q21 + del(13q) multiple-abnormality. CONCLUSIONS: Patients with 1q21 + were more likely to have coexisting negative clinical features and del(13q). 1q21 + was an independent prognostic factor associated with poor outcomes. Concurrence with such unfavorable features may account for poor outcomes given 1q21 + .


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Estudios Retrospectivos , Pronóstico , Inhibidores de Proteasoma , Aberraciones Cromosómicas
20.
Mol Biotechnol ; 65(8): 1378-1386, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36611100

RESUMEN

Sargassum hemiphyllum and Sargassum fusiforme are important benthic seaweeds that grow along the southeastern coast of China. The content of carotenoids in each population was detected by ultra-high performance liquid chromatography (UHPLC). The research results will enrich the theoretical basis and data support concerning the influencing factors of carotenoids in Sargassum. The inter-simple sequence repeat (ISSR) technique was used to study the genetic diversity of four S. hemiphyllum and two S. fusiforme populations, and the results provide a reference for the artificial cultivation of Sargassum. The total carotenoid content of Sargassum ranged from 161.79 ± 4.22 to 269.47 ± 6.15 µg/g. Among the carotenoids, ß-carotene and fucoxanthin accounted for 80%, and levels in S. hemiphyllum were generally higher than those in S. fusiforme. The carotenoid contents of S. hemiphyllum from different areas were significantly different (P < 0.05), and the total carotenoids content decreased toward the southern region. The average heterozygosity H ranged from 0.29 to 0.49, and the Shannon diversity index I ranged from 0.44 to 0.69. The polymorphic loci, genetic diversity, and other indicators of S. hemiphyllum populations were higher than those of S. fusiforme, and the diversity of cultivated populations was not significantly lower. The results showed that the genetic variation of Sargassum is limited, and thus, more sexual reproduction can be attempted in breeding. Considering morphological indicators, genetic diversity indexes, and carotenoid content, S. hemiphyllum appears to have a higher commercial development value.


Asunto(s)
Sargassum , Sargassum/genética , Sargassum/química , Variación Genética , Carotenoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA