Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Molecules ; 29(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893373

RESUMEN

Developing clinically meaningful nanomedicines for cancer therapy requires the drugs to be effective, safe, simple, cheap, and easy to store. In the present work, we report that a simple cationic Fe(III)-rich salt of [FeIIICl(TMPPH2)][FeIIICl4]2 (Fe-TMPP) exhibits a superior anticancer performance on a broad spectrum of cancer cell lines, including breast, colorectal cancer, liver, pancreatic, prostate, and gastric cancers, with half maximal inhibitory concentration (IC50) values in the range of 0.098-3.97 µM (0.066-2.68 µg mL-1), comparable to the best-reported medicines. Fe-TMPP can form stand-alone nanoparticles in water without the need for extra surface modification or organic-solvent-assisted antisolvent precipitation. Critically, Fe-TMPP is TME-responsive (TME = tumor microenvironment), and can only elicit its function in the TME with overexpressed H2O2, converting H2O2 to the cytotoxic •OH to oxidize the phospholipid of the cancer cell membrane, causing ferroptosis, a programmed cell death process of cancer cells.


Asunto(s)
Antineoplásicos , Ferroptosis , Nanomedicina , Humanos , Ferroptosis/efectos de los fármacos , Línea Celular Tumoral , Nanomedicina/métodos , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas/química , Compuestos Férricos/química , Microambiente Tumoral/efectos de los fármacos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/farmacología , Supervivencia Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología
2.
Anal Chem ; 96(22): 9078-9087, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38770734

RESUMEN

As an important disease biomarker, the development of sensitive detection strategies for miRNA, especially intracellular miRNA imaging strategies, is helpful for early diagnosis of diseases, pathological research, and drug development. Hybridization chain reaction (HCR) is widely used for miRNA imaging analysis because of its high specificity and lack of biological enzymes. However, the classic HCR reaction exhibits linear amplification with low efficiency, limiting its use for the rapid analysis of trace miRNA in living cells. To address this problem, we proposed a toehold-mediated exponential HCR (TEHCR) to achieve highly sensitive and efficient imaging of miRNA in living cells using ß-FeOOH nanoparticles as transfection vectors. The detection limit of TEHCR was as low as 92.7 fM, which was 8.8 × 103 times lower compared to traditional HCR, and it can effectively distinguish single-base mismatch with high specificity. The TEHCR can also effectively distinguish the different expression levels of miRNA in cancer cells and normal cells. Furthermore, TEHCR can be used to construct OR logic gates for dual miRNA analysis without the need for additional probes, demonstrating high flexibility. This method is expected to play an important role in clinical miRNA-related disease diagnosis and drug development as well as to promote the development of logic gates.


Asunto(s)
MicroARNs , Hibridación de Ácido Nucleico , MicroARNs/análisis , MicroARNs/metabolismo , Humanos , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico/métodos , Compuestos Férricos/química
3.
J Nanobiotechnology ; 22(1): 275, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778401

RESUMEN

BACKGROUND: Acute gouty is caused by the excessive accumulation of Monosodium Urate (MSU) crystals within various parts of the body, which leads to a deterioration of the local microenvironment. This degradation is marked by elevated levels of uric acid (UA), increased reactive oxygen species (ROS) production, hypoxic conditions, an upsurge in pro-inflammatory mediators, and mitochondrial dysfunction. RESULTS: In this study, we developed a multifunctional nanoparticle of polydopamine-platinum (PDA@Pt) to combat acute gout by leveraging mild hyperthermia to synergistically enhance UA degradation and anti-inflammatory effect. Herein, PDA acts as a foundational template that facilitates the growth of a Pt shell on the surface of its nanospheres, leading to the formation of the PDA@Pt nanomedicine. Within this therapeutic agent, the Pt nanoparticle catalyzes the decomposition of UA and actively breaks down endogenous hydrogen peroxide (H2O2) to produce O2, which helps to alleviate hypoxic conditions. Concurrently, the PDA component possesses exceptional capacity for ROS scavenging. Most significantly, Both PDA and Pt shell exhibit absorption in the Near-Infrared-II (NIR-II) region, which not only endow PDA@Pt with superior photothermal conversion efficiency for effective photothermal therapy (PTT) but also substantially enhances the nanomedicine's capacity for UA degradation, O2 production and ROS scavenging enzymatic activities. This photothermally-enhanced approach effectively facilitates the repair of mitochondrial damage and downregulates the NF-κB signaling pathway to inhibit the expression of pro-inflammatory cytokines. CONCLUSIONS: The multifunctional nanomedicine PDA@Pt exhibits exceptional efficacy in UA reduction and anti-inflammatory effects, presenting a promising potential therapeutic strategy for the management of acute gout.


Asunto(s)
Gota , Indoles , Polímeros , Especies Reactivas de Oxígeno , Ácido Úrico , Gota/tratamiento farmacológico , Gota/metabolismo , Gota/terapia , Especies Reactivas de Oxígeno/metabolismo , Animales , Ratones , Polímeros/química , Indoles/química , Indoles/farmacología , Nanopartículas/química , Platino (Metal)/química , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Humanos , Peróxido de Hidrógeno/metabolismo , Hipertermia Inducida/métodos , Células RAW 264.7 , Terapia Fototérmica/métodos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Masculino
4.
Anal Chem ; 96(17): 6774-6783, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38634427

RESUMEN

The identification of a specific tumor cell is crucial for the early diagnosis and treatment of cancer. However, it remains a challenge due to the limited sensitivity and accuracy, long response time, and low contrast of the recent approaches. In this study, we develop a dual miRNA-triggered DNA walker (DMTDW) assisted by APE1 for the specific recognition of tumor cells. miR-10b and miR-155 were selected as the research models. Without miR-10b and miR-155 presence, the DNA walker remains inactive as its walking strand of W is locked by L1 and L2. After miR-10b and miR-155 are input, the DNA walker is triggered as miR-10b and miR-155 bind to L1 and L2 of W-L1-L2, respectively, unlocking W. The DNA walker is driven by endogenous APE1 that is highly catalytic and is highly expressed in the cytoplasm of tumor cells but barely expressed in normal cells, ensuring high contrast and reaction efficiency for specific recognition of tumor cells. Dual miRNA input is required to trigger the DNA walker, making this strategy with a high accuracy. The DMTDW strategy exhibited high sensitivity for miRNA analysis with a detection limit of 44.05 pM. Living cell-imaging experiments confirmed that the DMTDW could effectively respond to the fluctuation of miRNA and specifically identified MDA-MB-231 cells from different cell lines. The proposed DMTDW is sensitive, rapid, and accurate for specific tumor cell recognition. We believe that the DMTDW strategy can become a powerful diagnostic tool for the specific recognition of tumor cells.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa , MicroARNs , MicroARNs/análisis , MicroARNs/metabolismo , MicroARNs/genética , Humanos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN/química , Línea Celular Tumoral
5.
Talanta ; 272: 125747, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364557

RESUMEN

MicroRNA (miRNA) is involved in the progression of Alzheimer's disease (AD) and emerges as a promising AD biomarker and therapeutic target. Therefore, there is an urgent need to develop convenient and precise miRNA detection methods for AD diagnosis. Herein, a dual-signal amplification strategy based on rolling circle amplification and APE1-assisted amplification for miRNA analysis for early diagnosis of AD was proposed. The strategy consisted of dumbbell-shaped probe (DP) as amplification template and a reporter probe (RP) with an AP site modification. In the presence of the target miRNA, the miRNAs bound to the toehold domain of DP and DP was activated into a circular template. Then, RCA reaction was triggered, producing a large number of long-stranded products containing repeated sequences. After RCA, APE1 enzyme recognized and removed AP site in the complex of RCA/RP products. By coupling RCA with APE1-assisted amplification, this method has high sensitivity with the limit of detection (LOD) of 1.82 fM. Moreover, by using DP as template for RCA reaction, high specificity can be achieved. By detecting miR-206 in serum using this method, the expression of miR-206 can be accurately distinguished between AD patients and healthy individuals, indicating that this method has broad application prospects in clinical diagnosis.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/análisis , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Límite de Detección , Diagnóstico Precoz , Técnicas de Amplificación de Ácido Nucleico/métodos
6.
Anal Chim Acta ; 1287: 342084, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38182379

RESUMEN

BACKGROUND: Human 8-oxoG DNA glycosylase 1 (hOGG1) is one of the important members of DNA glycosylase for Base excision repair (BER), the abnormal activity of which can lead to the failure of BER and the appearance of various diseases, such as breast cancer, bladder cancer, Parkinson's disease and lung cancer. Therefore, it is important to detect the activity of hOGG1. However, traditional detection methods suffer from time consuming, complicated operation, high false positive results and low sensitivity. Thus, it remains a challenge to develop simple and sensitive hOGG1 analysis strategies to facilitate early diagnosis and treatment of the relative disease. RESULTS: A target-induced rolling circle amplification (TIRCA) strategy for label-free fluorescence detection of hOGG1 activity was proposed with high sensitivity and specificity. The TIRCA strategy was constructed by a hairpin probe (HP) containing 8-oxoG site and a primer probe (PP). In the presence of hOGG1, the HP transformed into dumbbell DNA probe (DDP) after the 8-oxoG site of which was removed. Then the DDP formed closed circular dumbbell probe (CCDP) by ligase. CCDP could be used as amplification template of RCA to trigger RCA. The RCA products containing repeated G4 sequences could combine with ThT to produce enhanced fluorescence, achieving label-free fluorescence sensing of hOGG1. Given the high amplification efficiency of RCA and the high fluorescence quantum yield of the G4/ThT, the proposed TIRCA achieved highly sensitive measurement of hOGG1 activity with a detection limit of 0.00143 U/mL. The TIRCA strategy also exhibited excellent specificity for hOGG1 analysis over other interference enzymes. SIGNIFICANCE: This novel TIRCA strategy demonstrates high sensitivity and high specificity for the detection of hOGG1, which has also been successfully used for the screening of inhibitors and the analysis of hOGG1 in real samples. We believe that this TIRCA strategy provides new insight into the use of the isothermal nucleic acid amplification as a useful tool for hOGG1 detection and will play an important role in disease early diagnosis and treatment.


Asunto(s)
ADN Glicosilasas , Humanos , Neoplasias de la Mama/diagnóstico , ADN Glicosilasas/química , Reparación por Escisión , Fluorescencia
7.
Anal Chem ; 96(2): 910-916, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38171356

RESUMEN

Early tumor diagnosis is crucial to successful treatment. Earlier studies have shown that microRNA is a biomarker for early tumor diagnosis. The development of highly sensitive miRNA detection methods, especially in living cells, plays an indispensable role for early diagnosis and treatment of tumor. Although the catalytic hairpin assembly (CHA)-based miRNA analysis strategy is commonly used for disease diagnosis, further application of CHA is hindered due to its low amplification efficiency and low tumor recognition contrast. To address these limitations, we propose a dual-signal amplification strategy based on CHA and APE1-assisted amplification, enabling highly sensitive and high-contrast miRNA imaging. The miR-221 was selected as a target model. This dual-signal amplification strategy has exhibited high amplification efficiency, which could analyze miRNA as low as 21 fM. This strategy also exhibited high specificity, which could distinguish target miRNA and nontarget with single-base differences. Moreover, this method showed significant potential for practical application, as it could successfully distinguish the expression difference of miR-221 in the plasma samples of normal people and patients. Most importantly, the expression level of the APE1 enzyme in tumor cells is higher than that in normal cells, allowing this strategy to sensitively and specifically image miRNA within tumor cells. This proposed method has also been successfully used to indicate fluctuations of intracellular miRNA and to distinguish miRNA expression between normal cells and cancer cells with high contrast. We anticipate that this method will provide fresh insights and can be a powerful tool for tumor diagnosis and treatment based on miRNA analysis.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Humanos , MicroARNs/análisis , Técnicas Biosensibles/métodos , Catálisis , Diagnóstico por Imagen , Límite de Detección
8.
Small ; 20(10): e2306095, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37903361

RESUMEN

Seasonal influenza still greatly threatens public health worldwide, leading to significant morbidity and mortality. Antiviral medications for influenza treatment are limited and accompanied by increased drug resistance. In severe influenza virus infection, hyperinflammation and hypoxia may be the significant threats associated with mortality, so the development of effective therapeutic methods to alleviate excessive inflammation while reducing viral damage is highly pursued. Here, a multifunctional MOF-based nanohybrid of Cu─TCPP@Mn3 O4 as a novel drug against influenza A virus infection (MOF = metal-organic framework; TCPP = tetrakis (4-carboxyphenyl) porphyrin) is designed. Cu─TCPP@Mn3 O4 exhibits potent inhibitory capability against influenza A virus infection in vitro and in vivo. The mechanism study reveals that Cu─TCPP@Mn3 O4 inhibits the virus entry by binding to the HA2 subunit of influenza A virus hemagglutinin. In addition, the nanoparticles of Mn3 O4 in Cu─TCPP@Mn3 O4 can scavenge intracellular ROS with O2 generation to downregulate inflammatory factors and effectively inhibit cytokines production. By reconstructing the antioxidant microenvironment, Cu─TCPP@Mn3 O4 features as a promising nanomedicine with anti-inflammatory and anti-viral synergistic effects.


Asunto(s)
Gripe Humana , Nanopartículas , Humanos , Especies Reactivas de Oxígeno , Inflamación/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico
9.
Talanta ; 269: 125465, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008022

RESUMEN

Developing simple, rapid and specific mRNA imaging strategy plays an important role in the early diagnosis of cancer and the new drugs development. Herein, we have established a novel binary system based DNA tetrahedron and fluorogenic RNA aptamers for highly specific and label-free mRNA imaging in living cells. This developed system consisted of tetrahedron probe A (TPA) and tetrahedron probe B (TPB). TK1 mRNA was chosen as the study model. After TPA and TPB enter into the live cells, the TK1 mRNA induces TPA and TPB to approach and activate the fluorescent aptamer, resulting in enhanced fluorescent signal in the presence of small molecules of DFHBI-1T. By this design, the high specificity label-free detection of nucleic acids was achieved with a detection limit of 1.34 nM. Confocal fluorescence imaging experiments had proved that this strategy could effectively distinguish the TK1 mRNA expression level between normal cell and cancer cell. The developed method is expected to provide a new tool for early diagnosis of diseases and new drug development.


Asunto(s)
Aptámeros de Nucleótidos , ARN Mensajero/genética , Aptámeros de Nucleótidos/metabolismo , Colorantes Fluorescentes/metabolismo , ADN/genética , Imagen Óptica/métodos
10.
ACS Nano ; 17(20): 19853-19864, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37812400

RESUMEN

Due to the immunosuppressive tumor microenvironment (TME) and weak radiation absorption, the immune response triggered by radiation therapy (RT) is limited. Herein, a core-shell nanosensitizer UiO@MnS (denoted as UM) was genuinely constructed for the amplification of RT efficacy and induction of immunogenicity via integrating MnS-reprogrammed TME with Hf-based UiO-sensitized RT. The acid-sensitive MnS would produce H2S under acidic TME to improve oxygenation through inhibition mitochondrial respiration and reducing metabolic oxygen consumption, leading to decreased HIF-1α expression and enhanced radiosensitization. In addition, the generated H2S inhibited the catalase activity to increase the H2O2 level, which subsequently enhanced the Mn2+-mediated Fenton-like reaction, resulting in G2/M cell cycle arrest to improve the cellular sensitivity for radiation. This impressive tumor oxygenation, cell cycle arrest, and radiosensitization procedure boosted RT efficacy and resulted in strong antitumor immunogenicity. Taken together, combining the immunosuppressive TME modulation with a sensitizing radiation strategy shows great promise for magnifying immunogenic RT outputs.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias , Humanos , Microambiente Tumoral , Absorción de Radiación , Ciclo Celular , División Celular , Inmunosupresores , Neoplasias/radioterapia , Línea Celular Tumoral
11.
Anal Chem ; 95(40): 15025-15032, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37769140

RESUMEN

Accurate and specific imaging of low-abundance microRNA (miRNA) in living cells is extremely important for disease diagnosis and monitoring of disease progression. DNA nanomotors have shown great potential for imaging molecules of interest in living cells. However, inappropriate driving forces and complex design and operation procedures have hindered their further application. Here, we proposed an endogenous enzyme-powered DNA nanomotor (EEPDN), which employs an endogenous APE1 enzyme as fuel to execute repetitive cycles of motion for miRNA imaging in living cells. The whole motor system is constructed based on gold nanoparticles without other auxiliary additives. Due to the high efficiency of APE1, this EEPDN system has achieved highly sensitive miRNA imaging in living cells within 1.5 h. This strategy was also successfully used to differentiate the expression of specific miRNA between tumor cells and normal cells, demonstrating a high tumor cell selectivity. This strategy can promote the development of novel nanomotors and is expected to be a perfect intracellular molecular imaging tool for biological and medical applications.


Asunto(s)
Nanopartículas del Metal , MicroARNs , MicroARNs/genética , Oro , ADN/genética , Diagnóstico por Imagen
12.
Nanoscale ; 15(25): 10715-10729, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37318099

RESUMEN

The low X-ray attenuation coefficient of tumor soft tissue and the hypoxic tumor microenvironment (TME) during radiation therapy (RT) of breast cancer result in RT resistance and thus reduced therapeutic efficacy. In addition, immunosuppression induced by the TME severely limits the antitumor immunity of radiation therapy. In this paper, we propose a PCN-224@IrNCs/D-Arg nanoplatform for the synergistic radiosensitization, photodynamic, and NO therapy of breast cancer that also boosts antitumor immunity (PCN = porous coordination network, IrNCs = iridium nanocrystals, D-Arg = D-arginine). The local tumors can be selectively ablated via reprogramming the tumor microenvironment (TME), photodynamic therapy (PDT) and NO therapy, and the presence of the high-Z element Ir that sensitizes radiotherapy. The synergistic execution of these treatment modalities also resulted in adapted antitumor immune response. The intrinsic immunomodulatory effects of the nanoplatform also repolarize macrophages toward the M1 phenotype and induce dendritic cell maturation, activating antitumor T cells to induce immunogenic cell death as demonstrated in vitro and in vivo. The nanocomposite design reported herein represents a new regimen for the treatment of breast cancer through TME reprogramming to exert a synergistic effect for effective cancer therapy and antitumor immunity.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Microambiente Tumoral , Neoplasias/tratamiento farmacológico , Nanopartículas/uso terapéutico , Nanopartículas/química , Terapia de Inmunosupresión , Línea Celular Tumoral
13.
iScience ; 26(6): 106775, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37213227

RESUMEN

The strategies for eliminating excess reactive oxygen species (ROS) or suppressing inflammatory responses on the wound bed have proven effective for diabetic wound healing. In this work, a zinc-based nanoscale metal-organic framework (NMOF) functions as a carrier to deliver natural product berberine (BR) to form BR@Zn-BTB nanoparticles, which was, in turn, further encapsulated by hydrogel with ROS scavenging ability to yield a composite system of BR@Zn-BTB/Gel (denoted as BZ-Gel). The results show that BZ-Gel exhibited the controlled release of Zn2+ and BR in simulated physiological media to efficiently eliminated ROS and inhibited inflammation and resulted in a promising antibacterial effect. In vivo experiments further proved that BZ-Gel significantly inhibited the inflammatory response and enhanced collagen deposition, as well as to re-epithelialize the skin wound to ultimately promote wound healing in diabetic mice. Our results indicate that the ROS-responsive hydrogel coupled with BR@Zn-BTB synergistically promotes diabetic wound healing.

15.
J Nanobiotechnology ; 21(1): 138, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37106405

RESUMEN

Since the successful clinical trial of AuroShell for photothermal therapy, there is currently intense interest in developing gold-based core-shell structures with near-infrared (NIR) absorption ranging from NIR-I (650-900 nm) to NIR-II (900-1700 nm). Here, we propose a seed-mediated successive growth approach to produce gold nanoshells on the surface of the nanoscale metal-organic framework (NMOF) of UiO-66-NH2 (UiO = the University of Oslo) in one pot. The key to this strategy is to modulate the proportion of the formaldehyde (reductant) and its regulator / oxidative product of formic acid to harness the particle nucleation and growth rate within the same system. The gold nanoshells propagate through a well-oriented and controllable diffusion growth pattern (points → facets → octahedron), which has not been identified. Most strikingly, the gold nanoshells prepared hereby exhibit an exceedingly broad and strong absorption in NIR-II with a peak beyond 1300 nm and outstanding photothermal conversion efficiency of 74.0%. Owing to such superior performance, these gold nanoshells show promising outcomes in photoacoustic (PA), computed tomography (CT), and photothermal imaging-guided photothermal therapy (PTT) for breast cancer, as demonstrated both in vitro and in vivo.


Asunto(s)
Nanocáscaras , Nanocáscaras/química , Terapia Fototérmica , Oro/química , Imagen Multimodal , Fototerapia
17.
Molecules ; 28(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36903368

RESUMEN

The delivery of biocompatible reagents into cancer cells can elicit an anticancer effect by taking advantage of the unique characteristics of the tumor microenvironment (TME). In this work, we report that nanoscale two-dimensional FeII- and CoII-based metal-organic frameworks (NMOFs) of porphyrin ligand meso-tetrakis (6-(hydroxymethyl) pyridin-3-yl) porphyrin (THPP) can catalyze the generation of hydroxyl radicals (•OH) and O2 in the presence of H2O2 that is overexpressed in the TME. Photodynamic therapy consumes the generated O2 to produce a singlet oxygen (1O2). Both •OH and 1O2 are reactive oxygen species (ROS) that inhibit cancer cell proliferation. The FeII- and CoII-based NMOFs were non-toxic in the dark but cytotoxic when irradiated with 660 nm light. This preliminary work points to the potential of porphyrin-based ligands of transition metals as anticancer drugs by synergizing different therapeutic modalities.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Estructuras Metalorgánicas , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Femenino , Estructuras Metalorgánicas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Porfirinas/farmacología , Peróxido de Hidrógeno/farmacología , Ligandos , Fotoquimioterapia/métodos , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Compuestos Ferrosos/farmacología , Fármacos Fotosensibilizantes/farmacología , Microambiente Tumoral
18.
J Nanobiotechnology ; 21(1): 18, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650517

RESUMEN

The occurrence of osteoarthritis (OA) is highly correlated with the reduction of joint lubrication performance, in which persistent excessive inflammation and irreversible destruction of cartilage dominate the mechanism. The inadequate response to monotherapy methods, suboptimal efficacy caused by undesirable bioavailability, short retention, and lack of stimulus-responsiveness, are few unresolved issues. Herein, we report a pH-responsive metal-organic framework (MOF), namely, MIL-101-NH2, for the co-delivery of anti-inflammatory drug curcumin (CCM) and small interfering RNA (siRNA) for hypoxia inducible factor (HIF-2α). CCM and siRNA were loaded via encapsulation and surface coordination ability of MIL-101-NH2. Our vitro tests showed that MIL-101-NH2 protected siRNA from nuclease degradation by lysosomal escape. The pH-responsive MIL-101-NH2 gradually collapsed in an acidic OA microenvironment to release the CCM payloads to down-regulate the level of pro-inflammatory cytokines, and to release the siRNA payloads to cleave the target HIF-2α mRNA for gene-silencing therapy, ultimately exhibiting the synergetic therapeutic efficacy by silencing HIF-2α genes accompanied by inhibiting the inflammation response and cartilage degeneration of OA. The hybrid material reported herein exhibited promising potential performance for OA therapy as supported by both in vitro and in vivo studies and may offer an efficacious therapeutic strategy for OA utilizing MOFs as host materials.


Asunto(s)
Curcumina , Estructuras Metalorgánicas , Osteoartritis , Humanos , Curcumina/farmacología , Condrocitos/metabolismo , ARN Interferente Pequeño/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Inflamación/metabolismo , Concentración de Iones de Hidrógeno
19.
Food Chem ; 410: 135427, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36623460

RESUMEN

Rapid and sensitive analysis of ochratoxin A (OTA) plays an important role in food safety. Here, an aptasensor based on novel exponential rolling circle amplification (ERCA) was proposed for ultrasensitive and label-free fluorescence detection of OTA. The attachment of OTA to its aptamer could release H and rapidly hybridize with CT to initiate rolling circle amplification (RCA). The amplicons could further displace H from APH to initiate recycled RCA, achieving exponential growth of amplification products that contained G4 dimers for lighting up ThT. Benefiting from the exponential amplification efficiency of the ERCA strategy and the high fluorescence quantum yield of G4 dimer/ThT, this strategy exhibited a wide linear range from 10 fg/mL to 10 ng/mL with a detection limit of 4.3 fg/mL. In addition, the aptasensor displayed satisfactory recoveries in real sample analysis. We believe that this novel aptasensor possesses promising application prospects in food safety and medicine detection.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Ocratoxinas , Aptámeros de Nucleótidos/genética , Ocratoxinas/análisis , Colorantes Fluorescentes , Límite de Detección
20.
ACS Appl Mater Interfaces ; 15(2): 2602-2616, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36622638

RESUMEN

To improve the efficiency of radiation therapy (RT) for breast cancer, a designable multifunctional core-shell nanocomposite of FeP@Pt is constructed using Fe(III)-polydopamine (denoted as FeP) as the core and platinum particles (Pt) as the shell. The hybrid structure is further covered with hyaluronic acid (HA) to give the final nanoplatform of FeP@Pt@HA (denoted as FPH). FPH exhibits good biological stability, prolongs blood circulation time, and is simultaneously endowed with tumor-targeting ability. With CD44-mediated endocytosis of HA, FPH can be internalized by cancer cells and activated by the tumor microenvironment (TME). The redox reaction between Fe3+ in FPH and endogenous glutathione (GSH) or/and hydrogen peroxide (H2O2) initiates ferroptosis therapy by promoting GSH exhaustion and •OH generation. Moreover, FPH has excellent photothermal conversion efficiency and can absorb near-infrared laser energy to promote the above catalytic reaction as well as to achieve photothermal therapy (PTT). Ferroptosis therapy and PTT are further accompanied by the catalase activity of Pt nanoshells to accelerate O2 production and the high X-ray attenuation coefficient of Pt for enhanced radiotherapy (RT). Apart from the therapeutic modalities, FPH exhibits dual-modal contrast enhancement in infrared (IR) thermal imaging and computed tomography (CT) imaging, offering potential in imaging-guided cancer therapy. In this article, the nanoplatform can remodel the TME through the production of O2, GSH- and H2O2-depletion, coenhanced PTT, ferroptosis, and RT. This multimodal nanoplatform is anticipated to shed light on the design of TME-activatable materials to enhance the synergism of treatment results and enable the establishment of efficient nanomedicine.


Asunto(s)
Neoplasias de la Mama , Nanopartículas del Metal , Microambiente Tumoral , Femenino , Humanos , Neoplasias de la Mama/terapia , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Terapia Combinada/métodos , Compuestos Férricos/uso terapéutico , Peróxido de Hidrógeno , Nanopartículas/química , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Microambiente Tumoral/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA