Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.308
Filtrar
1.
Transplantation ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773837

RESUMEN

BACKGROUND: Stimulation of myeloid-derived suppressor cell (MDSC) formation represents a potential curative therapeutic approach for graft-versus-host disease (GVHD), which significantly impacts the prognosis of allogeneic hematopoietic stem cell transplantation. However, the lack of an effective strategy for inducing MDSC production in vivo has hindered their clinical application. In our previous study, MDSC expansion was observed in interleukin (IL)-27-treated mice. METHODS: In this study, we overexpressed exogenous IL-27 in mice using a recombinant adeno-associated virus vector to investigate its therapeutic and exacerbating effects in murine GVHD models. RESULTS: In our study, we demonstrated that exogenous administration of IL-27 significantly suppressed GVHD development in a mouse model. We found that IL-27 treatment indirectly inhibited the proliferation and activation of donor T cells by rapidly expanding recipient and donor myeloid cells, which act as MDSCs after irradiation or under inflammatory conditions, rather than through regulatory T-cell expansion. Additionally, IL-27 stimulated MDSC expansion by enhancing granulocyte-monocyte progenitor generation. Notably, we verified that IL-27 signaling in donor T cells exerted an antagonistic effect on GVHD prevention and treatment. Further investigation revealed that combination therapy involving IL-27 and T-cell depletion exhibited remarkable preventive effects on GVHD in both mouse and xenogeneic GVHD models. CONCLUSIONS: Collectively, these findings suggest that IL-27 promotes MDSC generation to reduce the incidence of GVHD, whereas targeted activation of IL-27 signaling in myeloid progenitors or its combination with T-cell depletion represents a potential strategy for GVHD therapy.

2.
Adv Healthc Mater ; : e2400441, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775779

RESUMEN

Accumulating evidence highlights p38 as a crucial factor highly activated during the process of acute kidney injury (AKI), but the application of p38 inhibitor in AKI was quite limited due to the low efficiency and poor kidney-targeting ability. Herein, a novel self-assembling peptide nanoparticle with specific p38-inhibiting activity was constructed, which linked mitogen-activated protein kinase kinase 3b (MKK3b), the functional domain of p38, with the cell-penetrating TAT sequence, ultimately self-assembling into TAT-MKK3b nanoparticles (TMNPs) through tyrosinase oxidation. Subsequent in vitro and in vivo studies demonstrated that TMNPs preferably accumulated in the renal tubular epithelial cells (RTECs) through forming protein coronas by binding to albumin, and strongly improved the reduced renal function of ischemia-reperfusion injury (IRI)-induced AKI and its transition to chronic kidney disease (CKD). Mechanically, TMNPs inhibited ferroptosis via its solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) axis-inducing capacity and synergistic potent antioxidant property in AKI. Our findings indicated that the multifunctional TMNPs exhibited renal targeting, ROS-scavenging and ferroptosis-mitigating capabilities, which may serve as a promising therapeutic agent for the treatment of AKI and its progression to CKD. This article is protected by copyright. All rights reserved.

3.
Int J Lab Hematol ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775786

RESUMEN

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma, which caused many patients to lose their precious lives. FOXO3 was a suppressor in various cancers, however, the role and mechanism of FOXO3 in DLBCL remain unclear. METHODS: Bioinformatics analysis was used to offer information FOXO3 expression and its expression for prognosis of DLBCL patients. The abundance of genes and proteins was evaluated using RT-qPCR and western blot. Cell proliferation and apoptosis was detected by CCK-8 and flow cytometry. The interactions among FOXO3, miR-34b, and HSPG2 were predicted by TransmiR and Starbase and validated using dual luciferase reporter assay, ChIP assay, and RIP assay. RESULTS: Our findings revealed that FOXO3 expression was abnormally declined in DLBCL cells. FOXO3 upregulation restrained cell proliferation and promoted cell apoptosis of DLBCL cells, while miR-34b inhibitor eliminated these influences. Similarly, miR-34b mimic suppressed malignant behaviors of DLBCL cells, which were abolished by HSPG2 overexpression. Mechanically, FOXO3 induced miR-34b expression through interacting with miR-34b promoter and HSPG2 was a targeted gene of miR-34b. CONCLUSION: FOXO3 attenuated the capability of cell proliferation and promoted cell apoptosis rate of DLBCL cells through affecting miR-34b/HSPG2 axis, therefore inhibiting DLBCL progression.

4.
Front Pediatr ; 12: 1308931, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720947

RESUMEN

Background: Idiopathic scoliosis significantly affects the physical and mental health of children and adolescents, with varying prevalence rates in different regions. The occurrence of idiopathic scoliosis is associated with genetic regulation and biochemical factors, but the changes in exosome-derived miRNA profiles among idiopathic scoliosis patients remain unclear. This study aimed to determine the prevalence of idiopathic scoliosis in Yunnan Province, China, and identify key exosome-derived miRNAs in idiopathic scoliosis through a cohort study. Methods: From January 2018 to December 2020, a cross-sectional study on idiopathic scoliosis in children and adolescents was conducted in Yunnan Province. A total of 84,460 students from 13 cities and counties in Yunnan Province participated in a scoliosis screening program, with ages ranging from 7 to 19 years. After confirmation through screening and imaging results, patients with severe idiopathic scoliosis and normal control individuals were selected using propensity matching. Subsequently, plasma exosome-derived miRNA sequencing and RT-qPCR validation were performed separately. Based on the validation results, diagnostic performance analysis and target gene prediction were conducted for differential plasma exosome-derived miRNAs. Results: The overall prevalence of idiopathic scoliosis in children and adolescents in Yunnan Province was 1.10%, with a prevalence of 0.87% in males and 1.32% in females. The peak prevalence was observed at age 13. Among patients diagnosed with idiopathic scoliosis, approximately 12.8% had severe cases, and there were more cases of double curvature than of single curvature, with thoracolumbar curvature being the most common in the single-curvature group. Sequencing of plasma exosome-derived miRNAs associated with idiopathic scoliosis revealed 56 upregulated and 153 downregulated miRNAs. Further validation analysis confirmed that hsa-miR-27a-5p, hsa-miR-539-5p, and hsa-miR-1246 have potential diagnostic value. Conclusions: We gained insights into the epidemiological characteristics of idiopathic scoliosis in Yunnan Province and conducted further analysis of plasma exosome-derived miRNA changes in patients with severe idiopathic scoliosis. This study has provided new insights for the prevention and diagnosis of idiopathic scoliosis, paving the way for exploring clinical biomarkers and molecular regulatory mechanisms. However, further validation and elucidation of the detailed biological mechanisms underlying these findings will be required in the future.

6.
Eur Heart J ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757788

RESUMEN

BACKGROUND AND AIMS: Incident heart failure (HF) among individuals with chronic kidney disease (CKD) incurs hospitalizations that burden patients and health care systems. There are few preventative therapies, and the Pooled Cohort equations to Prevent Heart Failure (PCP-HF) perform poorly in the setting of CKD. New drug targets and better risk stratification are urgently needed. METHODS: In this analysis of incident HF, SomaScan V4.0 (4638 proteins) was analysed in 2906 participants of the Chronic Renal Insufficiency Cohort (CRIC) with validation in the Atherosclerosis Risk in Communities (ARIC) study. The primary outcome was 14-year incident HF (390 events); secondary outcomes included 4-year HF (183 events), HF with reduced ejection fraction (137 events), and HF with preserved ejection fraction (165 events). Mendelian randomization and Gene Ontology were applied to examine causality and pathways. The performance of novel multi-protein risk models was compared to the PCP-HF risk score. RESULTS: Over 200 proteins were associated with incident HF after adjustment for estimated glomerular filtration rate at P < 1 × 10-5. After adjustment for covariates including N-terminal pro-B-type natriuretic peptide, 17 proteins remained associated at P < 1 × 10-5. Mendelian randomization associations were found for six proteins, of which four are druggable targets: FCG2B, IGFBP3, CAH6, and ASGR1. For the primary outcome, the C-statistic (95% confidence interval [CI]) for the 48-protein model in CRIC was 0.790 (0.735, 0.844) vs. 0.703 (0.644, 0.762) for the PCP-HF model (P = .001). C-statistic (95% CI) for the protein model in ARIC was 0.747 (0.707, 0.787). CONCLUSIONS: Large-scale proteomics reveal novel circulating protein biomarkers and potential mediators of HF in CKD. Proteomic risk models improve upon the PCP-HF risk score in this population.

7.
J Virol ; : e0049424, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757985

RESUMEN

Mitochondria are energy producers in cells, which can affect viral replication by regulating the host innate immune signaling pathways, and the changes in their biological functions are inextricably linked the viral life cycle. In this study, we screened a library of 382 mitochondria-targeted compounds and identified the antiviral inhibitors of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme in the de novo synthesis pathway of pyrimidine ribonucleotides, against classical swine fever virus (CSFV). Our data showed that the inhibitors interfered with viral RNA synthesis in a dose-dependent manner, with half-maximal effective concentrations (EC50) ranging from 0.975 to 26.635 nM. Remarkably, DHODH inhibitors obstructed CSFV replication by enhancing the innate immune response including the TBK1-IRF3-STAT1 and NF-κB signaling pathways. Furthermore, the data from a series of compound addition and supplementation trials indicated that DHODH inhibitors also inhibited CSFV replication by blocking the de novo pyrimidine synthesis. Remarkably, DHODH knockdown demonstrated that it was essential for CSFV replication. Mechanistically, confocal microscopy and immunoprecipitation assays showed that the non-structural protein 4A (NS4A) recruited and interacted with DHODH in the perinuclear. Notably, NS4A enhanced the DHODH activity and promoted the generation of UMP for efficient viral replication. Structurally, the amino acids 65-229 of DHODH and the amino acids 25-40 of NS4A were pivotal for this interaction. Taken together, our findings highlight the critical role of DHODH in the CSFV life cycle and offer a potential antiviral target for the development of novel therapeutics against CSF. IMPORTANCE: Classical swine fever remains one of the most economically important viral diseases of domestic pigs and wild boar worldwide. dihydroorotate dehydrogenase (DHODH) inhibitors have been shown to suppress the replication of several viruses in vitro and in vivo, but the effects on Pestivirus remain unknown. In this study, three specific DHODH inhibitors, including DHODH-IN-16, BAY-2402234, and Brequinar were found to strongly suppress classical swine fever virus (CSFV) replication. These inhibitors target the host DHODH, depleting the pyrimidine nucleotide pool to exert their antiviral effects. Intriguingly, we observed that the non-structural protein 4A of CSFV induced DHODH to accumulate around the nucleus in conjunction with mitochondria. Moreover, NS4A exhibited a strong interaction with DHODH, enhancing its activity to promote efficient CSFV replication. In conclusion, our findings enhance the understanding of the pyrimidine synthesis in CSFV infection and expand the novel functions of CSFV NS4A in viral replication, providing a reference for further exploration of antiviral targets against CSFV.

8.
Foods ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731690

RESUMEN

Antifreeze peptides have become effective antifreeze agents for frozen products, but their low quantity of active ingredients and high cost limit large-scale application. This study used the glycosylation of fish collagen peptides with glucosamine hydrochloride catalyzed by transglutaminase to obtain a transglutaminase-catalyzed glycosylation product (TGP) and investigate its antifreeze effect on tilapia. Compared with the blank group, the freshness (pH value of 6.31, TVB-N value of 21.7 mg/100 g, whiteness of 46.28), textural properties (especially hardness and elasticity), and rheological properties of the TGP groups were significantly improved. In addition, the protein structures of the samples were investigated using UV absorption and fluorescence spectroscopy. The results showed that the tertiary structure of the TGP groups changed to form a dense polymer. Therefore, this approach can reduce the denaturation and decomposition of muscle fibers and proteins in fish meat more effectively and has a better protective effect on muscle structure and protein aggregation, improving the stability of fish meat. This study reveals an innovative method for generating antifreeze peptides by enzymatic glycosylation, and glycosylated fish collagen peptide products can be used as new and effective green antifreeze agents in frozen foods.

9.
Polymers (Basel) ; 16(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732751

RESUMEN

Cellulose is used widely in antimicrobial packaging due to its abundance in nature, biodegradability, renewability, non-toxicity, and low cost. However, how efficiently and rapidly it imparts high antimicrobial activity to cellulose-based packaging materials remains a challenge. In this work, Ag NPs were deposited on the surface of carboxymethyl cellulose/starch/N'N Methylenebisacrylamide film using ultrasonic radiation. Morphology and structure analysis of as-prepared films were conducted, and the antibacterial effects under different ultrasonic times and reductant contents were investigated. These results showed that Ag NPs were distributed uniformly on the film surface under an ultrasonic time of 45 min. The size of Ag NPs changes as the reducing agent content decreases. The composite film demonstrated a slightly better antibacterial effect against E. coli than against S. aureus. Therefore, this work can provide valuable insights for the research on antimicrobial packaging.

10.
Front Vet Sci ; 11: 1353439, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737459

RESUMEN

Porcine circoviruses disease (PCVD), caused by porcine circovirus (PCVs), is an important swine disease characterized by porcine dermatitis, nephrotic syndrome and reproductive disorders in sows. However, diseases caused by PCV2, PCV3, or PCV4 are difficult to distinguish, so a simple, rapid, accurate and high-throughput diagnostic and identification method is urgently needed to differentiate these three types. In this study, specific primers and probes were designed based on the conserved region sequences of the Rep gene of PCV2, and the Cap gene of PCV3 and PCV4. A multiplex qPCR assay was developed and optimized that the limit of detection concentration could reach as low as 3.8 copies/µL, with all correlation coefficients (R2) exceeding 0.999. Furthermore, the method showed no cross-reaction with other crucial porcine viral pathogens, and both intra-repeatability and inter-reproducibility coefficients of variation were below 2%. The assay was applied to the detection of 738 pig samples collected from 2020 to 2021 in Guangdong Province, China. This revealed positive infection rates of 65.18% for PCV2, 29.27% for PCV3, and 0% for PCV4, with a PCV2/PCV3 co-infection rate of 23.17%. Subsequently, complete genome sequences of 17 PCV2 and 4 PCV3 strains were obtained from the above positive samples and pre-preserved positive circovirus samples. Nucleotide sequence analysis revealed that the 17 PCV2 strains shared 96.7-100% complete nucleotide identity, with 6 strains being PCV2b and 11 strains being PCV2d; the 4 PCV3 strains shared 98.9-99.4% complete nucleotide identity, with 2 strains being PCV3a-1 and 2 strains being PCV3b. This research provides a reliable tool for rapid PCVs identification and detection. Molecular epidemiological investigation of PCVs in pigs in Guangdong Province will help us to understand PCV2 and PCV3 epidemiological characteristics and evolutionary trends.

11.
Heliyon ; 10(9): e30209, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707270

RESUMEN

Objective: In this study, we aimed to utilize computed tomography (CT)-derived radiomics and various machine learning approaches to differentiate between invasive mucinous adenocarcinoma (IMA) and invasive non-mucinous adenocarcinoma (INMA) preoperatively in solitary pulmonary nodules (SPN) ≤3 cm. Methods: A total of 538 patients with SPNs measuring ≤3 cm were enrolled, categorized into either the IMA group (n = 50) or INMA group (n = 488) based on postoperative pathology. Radiomic features were extracted from non-contrast-enhanced CT scans and identified using the least absolute shrinkage and selection operator (LASSO) algorithm. In constructing radiomics-based models, logistic regression, support vector machines, classification and regression trees, and k-nearest neighbors were employed. Additionally, a clinical model was developed, focusing on CT radiological features. Subsequently, this clinical model was integrated with the most effective radiomic model to create a combined model. Performance assessments of these models were conducted, utilizing metrics such as the area under the receiver operating characteristic curve (AUC), DeLong's test, net reclassification index (NRI), and integrated discrimination improvement (IDI). Results: The support vector machine approach showed superior predictive efficiency, with AUCs of 0.829 and 0.846 in the training and test cohorts, respectively. The clinical model had AUCs of 0.760 and 0.777 in the corresponding cohorts. The combined model had AUCs of 0.847 and 0.857 in the corresponding cohorts. Furthermore, compared to the radiomic model, the combined model significantly improved performance in both the training (DeLong test P = 0.045, NRI 0.206, IDI 0.024) and test cohorts (P = 0.029, NRI 0.125, IDI 0.032), as well as compared to the clinical model in both the training (P = 0.01, NRI 0.310, IDI 0.09) and test cohorts (P = 0.047, NRI 0.382, IDI 0.085). Conclusion: the combined model exhibited excellent performance in distinguishing between IMA and INMA in SPNs ≤3 cm.

12.
Plant Foods Hum Nutr ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750193

RESUMEN

Desmodium caudatum extracts (DCE) were investigated for their potential therapeutic effects on diabetic nephropathy (DN). In our study, the high-fat diet (HFD) / streptozotocin (STZ)-induced DN model in C57BL/6 mice was treated with 100 mg/kg, 200 mg/kg DCE. The results showed that DCE decreased biochemical parameters and proteinuria levels. The kidney sections staining indicated that DCE treatment recovered glomerular atrophy and alleviated lipid droplets in the glomerular. Additionally, DCE inhibited lipid and glycogen accumulation down-regulated the expression of sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS) proteins. DCE also reduced collagenous fibrous tissue and the expression of transforming growth factor-ß1 (TGF-ß1) and alpha-smooth muscle actin (α-SMA) through Masson's trichrome staining and immunohistochemical analysis. We found that DCE alleviated hydroxyproline content, and epithelial-mesenchymal transition (EMT). Besides, the results shown that DCE enhanced the antioxidant enzymes to mitigate fibrosis by reducing oxidative stress. In conclusion, our study provided evidence of the protective effect of DCE which down-regulated hyperglycemia, hyperlipidemia and inhibition of TGF-ß1 and EMT pathway but elevated antioxidant, suggesting its therapeutic implication for DN.

13.
Hum Cell ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753279

RESUMEN

The link between ferroptosis, a form of cell death mediated by iron and acute kidney injury (AKI) is recently gaining widespread attention. However, the mechanism of the crosstalk between cells in the pathogenesis and progression of acute kidney injury remains unexplored. In our research, we performed a non-negative matrix decomposition (NMF) algorithm on acute kidney injury single-cell RNA sequencing data based specifically focusing in ferroptosis-associated genes. Through a combination with pseudo-time analysis, cell-cell interaction analysis and SCENIC analysis, we discovered that proximal tubular cells, macrophages, and fibroblasts all showed associations with ferroptosis in different pathways and at various time. This involvement influenced cellular functions, enhancing cellular communication and activating multiple transcription factors. In addition, analyzing bulk expression profiles and marker genes of newly defined ferroptosis subtypes of cells, we have identified crucial cell subtypes, including Egr1 + PTC-C1, Jun + PTC-C3, Cxcl2 + Mac-C1 and Egr1 + Fib-C1. All these subtypes which were found in AKI mice kidneys and played significantly distinct roles from those of normal mice. Moreover, we verified the differential expression of Egr1, Jun, and Cxcl2 in the IRI mouse model and acute kidney injury human samples. Finally, our research presented a novel analysis of the crosstalk of proximal tubular cells, macrophages and fibroblasts in acute kidney injury targeting ferroptosis, therefore, contributing to better understanding the acute kidney injury pathogenesis, self-repairment and acute kidney injury-chronic kidney disease (AKI-CKD) progression.

14.
Adv Mater ; : e2403038, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724029

RESUMEN

Perovskite solar cells (PSCs) are developed rapidly in efficiency and stability in recent years, which can compete with silicon solar cells. However, an important obstacle to the commercialization of PSCs is the toxicity of lead ions (Pb2+) from water-soluble perovskites. The entry of free Pb2+ into organisms can cause severe harm to humans, such as blood lead poisoning, organ failure, etc. Therefore, this work reports a "lead isolation-capture" dual detoxification strategy with calcium disodium edetate (EDTA Na-Ca), which can inhibit lead leakage from PSCs under extreme conditions. More importantly, leaked lead exists in a nontoxic aggregation state chelated by EDTA. For the first time, in vivo experiments are conducted in mice to systematically prove that this material has a significant inhibitory effect on the toxicity of perovskites. In addition, this strategy can further enhance device performance, enabling the optimized devices to achieve an impressive power conversion efficiency (PCE) of 25.19%. This innovative strategy is a major breakthrough in the research on the prevention of lead toxicity in PSCs.

15.
Front Microbiol ; 15: 1394304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741735

RESUMEN

Objective: In this study, we examined the therapeutic effects of Yinhuapinggan granules (YHPGs) in influenza-infected mice. We also examined how YHPGs affect the composition of the intestinal flora and associated metabolites. Methods: We used the nasal drip method to administer the influenza A virus (IAV) H1N1 to ICR mice. Following successful model construction, the mice were injected with 0.9% sterile saline and low (5.5 g/kg), medium (11 g/kg), and high (22 g/kg) doses of YHPGs. The pathological changes in the lungs and intestines were evaluated by gavage for 5 consecutive days. Detection of sIgA, IL-6, TNF-α, INF-γ, and TGF-ß cytokine levels in serum by enzyme-linked immunosorbent assay. Real-time fluorescence quantitative polymerase chain reaction and Western blot were used to measure the mRNA and protein expression of the tight junction proteins claudin-1, occludin, and zonula occludens-1 (ZO-1) in the colon. To assess the influence of YHPGs on the intestinal microbiota, feces were obtained from the mice for 16s rRNA sequencing, and short-chain fatty acids (SCFAs) were measured in the feces. Results: By reducing the production of pro-inflammatory cytokines and increasing the relative expression of claudin-1, occludin, and ZO-1 in colon tissues, YHPGs had a protective effect in tissues from the lungs and colon. When YHPGs were administered to mice with IAV infection, the relative abundance of Lactobacillus, Coprobacillus, Akkermansia, Prevotella, Oscillospira, and Ruminococcus increased, whereas the relative abundance of Desulfovibrio decreased. Conclusion: The therapeutic mechanism of YHPGs against IAV infection in mice may be underpinned by modulation of the structural composition of colonic bacteria and regulation of SCFA production.

17.
Int J Nurs Pract ; : e13264, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747089

RESUMEN

AIMS: The purpose of this study was to investigate the status of self-management behaviour and illness perceptions and to examine illness perceptions in relation to self-management behaviour in elderly patients with chronic obstructive pulmonary disease (COPD). METHODS: A cross-sectional study was conducted, and 152 elderly COPD patients were recruited via the convenience sampling method. The COPD Self-Management Scale and the Revised Illness Perception Questionnaire for COPD patients were used to examine self-management behaviour and illness perceptions. Pearson correlation analysis, univariate analysis and hierarchical linear regression analysis were used to explore illness perceptions in relation to self-management behaviour. RESULTS: The mean overall score for self-management behaviour was 2.90 ± 0.39. Among the subscales of self-management behaviour, information management had the lowest score of 2.20 ± 0.76. Patients' demographic and clinical characteristics, including educational level, smoking status, type of primary caregiver, home oxygen therapy and COPD duration, were found to be significant determinants of self-management behaviour. After controlling for these variables, several illness perception subscales, including treatment control, personal control, coherence, timeline cyclical and identity, were significantly correlated with self-management behaviour. CONCLUSIONS: This study confirmed that elderly COPD patients' self-management behaviour was unsatisfactory and that illness perceptions were significant determinants of self-management behaviour. The findings may contribute to the development of self-management interventions for elderly COPD patients.

18.
Opt Lett ; 49(10): 2733-2736, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748148

RESUMEN

A novel approach-integrating a simulated annealing (SA) algorithm with deep learning (DL) acceleration-is presented for the rapid and accurate development of terahertz perfect absorbers through forward prediction and backward design. The forward neural network (FNN) effectively deduces the absorption spectrum based on metasurface geometry, resulting in an 80,000-fold increase in computational speed compared to a full-wave solver. Furthermore, the absorber's structure can be precisely and promptly derived from the desired response. The incorporation of the SA algorithm significantly enhances design efficiency. We successfully designed low-frequency, high-frequency, and broadband absorbers spanning the 4 to 16 THz range with an error margin below 0.02 and a remarkably short design time of only 10 min. Additionally, the proposed model in this Letter introduces a novel, to our knowledge, method for metasurface design at terahertz frequencies such as the design of metamaterials across optical, thermal, and mechanical domains.

19.
ACS Appl Mater Interfaces ; 16(19): 25148-25159, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38695364

RESUMEN

Green electromagnetic interference (EMI) shielding materials not only require high shielding effectiveness (SE) and low reflection but also need to be recyclable after damage; however, it is challenging to strike a balance in practice. Here, a polyacrylamide (PAM) composite composed of numerous chemically cross-linked PAM@carbon nanotube (cPAM@CNT) core-shell particles featuring rich wrinkled microstructures was prepared using an adsorption-drying-shrinking strategy. The wrinkled microstructures enable the incident electromagnetic waves (EMWs) to undergo attenuation within the composites, achieving an average EMI SE of 67.5 dB in the X band. Due to the hygroscopicity of hydrophobically associated PAM (hPAM, an adhesive for cPAM@CNTs core-shell particles), the average EMI SE of the composites further increased to 83.2 dB after exposure to 91% relative humidity for 24 h, with only a 2.7 dB low reflection. Additionally, the composites also demonstrated excellent Joule heating, photothermal performance, and recyclability, which exhibit substantial promise for advanced EMI shielding applications.

20.
Heliyon ; 10(9): e29879, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38711644

RESUMEN

Background: Polycystic ovary syndrome (PCOS) is main cause of anovulatory infertility in women with gestational age. There are currently four distinct phenotypes associated with individualized endocrinology and metabolism. Growth differentiation factor 9 (GDF9) is a candidate as potential biomarker for the assessment of oocyte competence. The effect on oocyte capacity has not been evaluated and analyzed in PCOS phenotypes. Objective: We aimed to screen the expression levels of GDF9 in mature follicles of women with controlled ovarian hyperstimulation (COS) with different PCOS phenotypes. To determine the correlation between the expression level of GDF9 and oocyte development ability. Methods: In Part 1, we conducted a retrospective study comparing the clinical outcomes and endocrine characteristics of patients with PCOS according to different subgroups (depending on the presence or absence of the main features of polycystic ovarian morphology (PCOM), hyperandrogenism (HA), and oligo-anovulation (OA)) and non-PCOS control group. We stratified PCOS as phenotype A (n = 29), phenotype B (n = 18) and phenotype D (n = 24). In Part 2, the expression of GDF9 in follicular fluid (FF) and cumulus cells (CCs) were detected by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. Results: In Part 1, the baseline clinical, hormonal, and ultrasonographic characteristics of the study population were matched with the presence or absence of the cardinal features of each PCOS phenotypes showed a clear difference. Phenotypes A and D had statistically significant associations with blastocyst formation and clinical pregnancy compared with phenotypes B (p < 0.001). In Part 2, the levels of GDF9 in FF and CCs for phenotype A and B were significantly were higher than those of phenotype D (P = 0.019, P = 0.0015, respectively). Multivariate logistic regression analysis showed that GDF9 was an important independent predictor of blastocyst formation (P<0.001). The blastocyst formation rate of phenotype A was higher than that of phenotype B and D (P<0.001). Combining the results of the two parts, GDF9 appears to play a powerful role in the development of embryos into blastocysts. Conclusions: GDF9 expression varies with different PCOS phenotypes. Phenotype A had higher GDF9 levels and blastocyst formation ability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA