Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Sci Total Environ ; 954: 176610, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357753

RESUMEN

Toxic harmful algal blooms (HABs) have received increasing attention owing to their threat to the health of aquatic life and seafood consumers. This study evaluated the impacts of elevated atmospheric partial pressure of CO2 (pCO2) on the production of paralytic shellfish toxins (PSTs) in different Alexandrium spp. strains, together with its further effects on the bioaccumulation/elimination dynamics of PSTs in bivalves contaminated with PSTs from toxic dinoflagellates. Our results showed that elevated pCO2 stimulated the growth of the two Alexandrium spp. (A. catenella and A. pacificum) isolated from the northern and southern coastal areas of China, respectively, and affected PST production including content and toxicity of the two strains differently. Further PSTs bioaccumulation/elimination in PSTs-contaminated Manila clam, Ruditapes philippinarum under high pCO2 also occurred. It is worth noting the biotransformation of neosaxitoxin (NEO) with high toxicity through trophic transfer with effect of elevated pCO2. When in microalgae cultured under the control (410 ppm) and elevated pCO2 conditions (495 and 850 ppm), the proportion of NEO in the PST content produced by A. catenella was reduced from 11.1 to 6.4 and 2.6 %, while the proportion of NEO in A. pacificum was increased from 3.1 to 3.6 and 4.7 %, respectively. NEO accounted for >50 % of total PST contents in clams, which were biotransformed via transfer from dinoflagellates and higher pCO2 enhanced this biotransformation leading to increased NEO accumulation. The negatively affected elimination of PSTs, especially NEO, in clams fed with A. catenella or A. pacificum, indicates that the detoxification of PSTs-contaminated clams may be more difficult under elevated pCO2. This study provides reference for developing models to assess the safety of bivalves under the co-stress of environmental change and toxic HABs, suggesting that ocean acidification may lead to the higher safety risk of Manila clams exposed to toxic HAB dinoflagellates.

2.
Environ Sci Technol ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39381896

RESUMEN

Understanding the fate of terrestrial organic carbon (terrOC) preservation in the marine environments is critical for deciphering the biogeochemical processes associated with the global carbon cycle and the Earth's climate change. The mechanisms controlling terrOC preservation are not completely understood, while lateral oxygen exposure time (OET) is considered as a critical controlling factor. Here, we first utilized molecular dynamics simulations to investigate the structural properties of lignin under anoxic, suboxic, and oxic conditions for understanding the mechanisms of terrOC preservation during sediment lateral transport in the ocean. Our finding suggested that oxygen exposure was indispensable for terrOC degradation through influencing the structural stability and reactivity of lignin. Our simulated results showed that in suboxic environments, prolonged OET may enhance terrOC preservation. Our organic geochemical results suggested that terrOC preferably preserved in coarse silts (20-63 µm) than fine silts (<20 µm) in suboxic environments, largely due to hydrodynamics-driven prolonged OET in coarse sediments, which may efficiently reduce CO2 emissions. Overall, our study sheds new light on the mechanisms of lateral OETs on terrOC preservation in suboxic conditions and, from a unique molecular structural perspective, provides insights into the impact of prolonged OETs on terrOC oxidative degradation in the marine environment.

3.
Int J Biol Sci ; 20(12): 4601-4617, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309437

RESUMEN

Celastrol (Cel), derived from the traditional herb Tripterygium wilfordii Hook. f., has anti-inflammatory, anti-tumor, and immunoregulatory activities. Renal dysfunction, including acute renal failure, has been reported in patients following the administration of Cel-relative medications. However, the functional mechanism of nephrotoxicity caused by Cel is unknown. This study featured combined use of activity-based protein profiling and metabolomics analysis to distinguish the targets of the nephrotoxic effects of Cel. Results suggest that Cel may bind directly to several critical enzymes participating in metabolism and mitochondrial functions. These enzymes include voltage-dependent anion-selective channel protein 1 (essential for maintaining mitochondrial configurational and functional stability), pyruvate carboxylase (involved in sugar isomerization and the tricarboxylic acid cycle), fatty acid synthase (related to ß-oxidation of fatty acids), and pyruvate kinase M2 (associated with aerobic respiration). Proteomics and metabolomics analysis confirmed that Cel-targeted proteins disrupt some metabolic biosynthetic processes and promote mitochondrial dysfunction. Ultimately, Cel aggravated kidney cell apoptosis. These cumulative results deliver an insight into the potential mechanisms of Cel-caused nephrotoxicity. They may also facilitate development of antagonistic drugs to mitigate the harmful effects of Cel on the kidneys and improve its clinical applications.


Asunto(s)
Metabolómica , Triterpenos Pentacíclicos , Proteómica , Triterpenos , Triterpenos/farmacología , Proteómica/métodos , Animales , Riñón/efectos de los fármacos , Riñón/metabolismo , Humanos , Apoptosis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
4.
Front Immunol ; 15: 1438030, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206192

RESUMEN

With the COVID-19 pandemic, the importance of vaccines has been widely recognized and has led to increased research and development efforts. Vaccines also play a crucial role in cancer treatment by activating the immune system to target and destroy cancer cells. However, enhancing the efficacy of cancer vaccines remains a challenge. Adjuvants, which enhance the immune response to antigens and improve vaccine effectiveness, have faced limitations in recent years, resulting in few novel adjuvants being identified. The advancement of artificial intelligence (AI) technology in drug development has provided a foundation for adjuvant screening and application, leading to a diversification of adjuvants. This article reviews the significant role of tumor vaccines in basic research and clinical treatment and explores the use of AI technology to screen novel adjuvants from databases. The findings of this review offer valuable insights for the development of new adjuvants for next-generation vaccines.


Asunto(s)
Adyuvantes Inmunológicos , Inteligencia Artificial , COVID-19 , Vacunas contra el Cáncer , Neoplasias , Humanos , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Neoplasias/inmunología , Neoplasias/terapia , COVID-19/prevención & control , COVID-19/inmunología , SARS-CoV-2/inmunología , Animales , Desarrollo de Vacunas , Desarrollo de Medicamentos
5.
Sci Total Environ ; 950: 175068, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39094651

RESUMEN

Chengdu Plain Urban Agglomeration (CPUA) is one of the most serious areas suffering from ozone pollution in China. A comprehensive field observation focused on the ozone production rate and its sensitivity was conducted at CPUA in the summer of 2019. Six sampling sites were set and two ozone pollution episodes were recognized. The daily maximum 8-h average (MDA8) O3 concentration reached 137.9 ppbv in the urban sites during the ozone pollution episode. Peak concentration of O3 was closely related to intense solar radiation, high temperatures, and precursor emissions. The OH-HO2-RO2 radical chemistry and ozone production rate (P(O3)) were calculated using an observation-based model (OBM). The daily peak OH concentration varied in the range of 3-13 × 106 molecules cm-3, and peak HO2 and RO2 were in the range of 2-14 × 108 molecules cm-3 during ozone pollution episodes. During the ozone pollution episode, the average maximum of P(O3) in suburban sites (about 30 ppbv h-1.) was compared with urban sites, and the maximum of P(O3) was 18 ppbv h-1 in rural sites. The relative incremental reactivity (RIR) results demonstrate that it was a VOCs-limited regime in the central urban area of Chengdu, with NOx suppression effect in some regions. In the southern neighboring suburb of Chengdu, it was VOCs-limited as well. However, the northern suburban area was a transition region. In the remote rural areas of the southern CPUA, it was highly NOx-limited. Local ozone production driven by the photochemical process is crucial to the ozone pollution formation in CPUA. The geographically differentiated recognition of the ozone regime found by this study can help to tailor control strategies for local conditions and avoid the negative effects of a one-size-fits-all approach.

6.
Water Res X ; 23: 100229, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-39099803

RESUMEN

Research on interactions between grazers and toxigenic algae is fundamental for understanding toxin dynamics within aquatic ecosystems and developing biotic approaches to mitigate harmful algal blooms. The dinoflagellate Alexandrium minutum is a well-known microalga responsible for paralytic shellfish toxins (PSTs) contamination in many coastal regions worldwide. This study investigated the impact of the ciliate Euplotes balteatus on cell density and PSTs transfer in simulated A. minutum blooms under controlled conditions. E. balteatus exhibited resistance to the PSTs produced by A. minutum with a density of up to 10,000 cells/mL, sustaining growth and reproduction while eliminating algal cells within a few days. The cellular PSTs content of A. minutum increased in response to the grazing pressure from E. balteatus. However, due to the substantial reduction in density, the overall toxicity of the algal population decreased to a negligible level. Most PSTs contained within algal cells were temporarily accumulated in E. balteatus before being released into the water column, suggesting unclear mechanisms for PSTs excretion in unicellular grazers. In principle, the grazing of E. balteatus on A. minutum promotes the transfer of the majority of intracellular PSTs into extracellular portions, thereby mitigating the risk of their accumulation and contamination through marine trophic pathways. However, this process also introduces an increase in the potential environmental hazards posed by extracellular PSTs to some extent.

7.
J Hazard Mater ; 477: 135297, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39106726

RESUMEN

Neonicotinoids (NEOs) and fipronil are widely used in pest control, but their spatiotemporal distribution and risk levels in the "river-estuary-bay" system remain unclear. Between 2018 and 2021, 148 water samples from rivers to inshore and offshore seawater in Laizhou Bay, China were collected to investigate the presence of eight NEOs and fipronil and its metabolites (FIPs). Significant seasonal variations in NEOs were observed under the influence of different cultivation practices and climatic conditions, with higher levels in the summer than in the spring. The average concentrations of total neonicotinoids (ΣNEOs) and ∑FIPs decreased from rivers (63.64 ng/L, 2.41 ng/L) to inshore (22.62 ng/L, 0.14 ng/L) and offshore (4.48 ng/L, 0.10 ng/L) seawater of Laizhou Bay. The average concentrations of ΣNEOs decreased by 85.3 % from 2018 to 2021. The predominant insecticides in the study area were acetamiprid, thiamethoxam, imidacloprid, and fipronil sulfone, with a gradual shift toward low-toxicity and environmentally friendly species over time. Influenced by agricultural intensity, ∑NEOs were mostly distributed in the Yellow River, Xiaoqing River, and their estuaries, where they pose chronic ecological risks. However, FIP exhibited high risk in certain rivers and sewage treatment plants owing to the use of animal repellents or landscape gardening insecticides. This study provides evidence of the transfer of NEOs and FIPs from rivers to the ocean and also clarifies their transition dynamics and changes in risk levels from rivers to oceans. Additionally, the study offers data support for identifying critical pesticide control areas.


Asunto(s)
Monitoreo del Ambiente , Insecticidas , Neonicotinoides , Pirazoles , Ríos , Agua de Mar , Contaminantes Químicos del Agua , Pirazoles/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Insecticidas/análisis , Neonicotinoides/análisis , China , Agua de Mar/química , Estaciones del Año , Medición de Riesgo
8.
Environ Res ; 261: 119646, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39032622

RESUMEN

Domoic acid (DA) is a neurotoxin produced by marine microalgae. It tends to accumulate in marine shellfish and fish, posing a threat to aquaculture and seafood consumers' health. In this study, DA in the surface and bottom seawater, sediment, and porewater of the Jiaozhou Bay, a typical mariculture bay in China, was systematically investigated for the first time over different seasons. Surprisingly, a high concentration of DA was discovered in the marine sediment porewater (maximum detected concentration: 289.49 ng/L) for the first time. DA was found to be extensively distributed in the water body and sedimentary environment of the Jiaozhou Bay. DA in the surface and bottom seawater of Jiaozhou Bay in spring was uniformly distributed, whereas DA showed obvious spatial variations in summer and winter. The high concentration areas of DA are located in the north of Jiaozhou Bay and decreased to the south areas. DA was also distributed in the sediment (spring mean: 316.57 ng/kg; summer mean: 10.22 ng/kg; winter mean: 237.08 ng/kg) and porewater (spring mean: 129.70 ng/L; summer mean: 53.54 ng/L; winter mean: 19.90 ng/L) of Jiaozhou Bay. The DA concentrations in the surface sediment and porewater were higher in the spring than in the winter and summer, contrary to the seasonal variation pattern observed in the surface and bottom seawater. The DA concentration in porewater was significantly higher than in the surface and bottom seawater, indicating that the risk of pollution contamination from DA to benthic fishery organisms may be underestimated. Overall, DA is widely distributed in the seawater and also in the benthic environment of Jiaozhou Bay and exhibited potential harm to fishery organisms varied greatly with seasons. It is an important discovery for marine algae toxins and has important guiding significance and important indicative role for the routine monitoring and management of DA pollution in water and benthic environment.


Asunto(s)
Bahías , Monitoreo del Ambiente , Sedimentos Geológicos , Ácido Kaínico , Agua de Mar , Contaminantes Químicos del Agua , China , Ácido Kaínico/análogos & derivados , Ácido Kaínico/análisis , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Contaminantes Químicos del Agua/análisis , Agua de Mar/química , Agua de Mar/análisis , Estaciones del Año , Acuicultura , Análisis Espacio-Temporal
9.
Environ Pollut ; 360: 124536, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029862

RESUMEN

Tri (2-Ethylhexyl) phosphate (TEHP), widely used as a fire retardant and plasticizer, has been commonly found in the environment. Its potential health-related risks, especially reproductive toxicity, have aroused concern. However, the potential cellular mechanisms remain unexplored. In this study, we aimed to investigate the molecular mechanisms underlying TEHP-caused cell damage in Sertoli cells, which play a crucial role in supporting spermatogenesis. Our findings indicate that TEHP induces apoptosis in 15P-1 mouse Sertoli cells. Subsequently, we conducted RNA sequencing analyses, which suggested that ER stress, autophagy, and MAPK-related pathways may participate in TEHP-induced cytotoxicity. Furthermore, we demonstrated that TEHP triggers ER stress, activates p38 MAPK, and inhibits autophagy flux. Then, we showed that the inhibition of ER stress or p38 MAPK activation attenuates TEHP-induced apoptosis, while the inhibition of autophagy flux is responsible for TEHP-induced apoptosis. These results collectively reveal that TEHP induces ER stress, activates p38, and inhibits autophagy flux, ultimately leading to apoptosis in Sertoli cells. These shed light on the molecular mechanisms underlying TEHP-associated testicular toxicity.


Asunto(s)
Apoptosis , Autofagia , Estrés del Retículo Endoplásmico , Células de Sertoli , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Animales , Masculino , Autofagia/efectos de los fármacos , Ratones , Apoptosis/efectos de los fármacos , Análisis de Secuencia de ARN , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Retardadores de Llama/toxicidad , Plastificantes/toxicidad , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/análogos & derivados
10.
Chem Commun (Camb) ; 60(59): 7634-7637, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38958669

RESUMEN

A microsphere, assembled from a chiral π-conjugated polymer with narrow polydispersity, features a well-organized twisted-bipolar structure and exhibits highly biased circularly polarized luminescence (CPL). The CPL emitted toward the equatorial direction is 61-fold greater than that emitted along the zenith direction, which is the highest anisotropy among existing microscopic CPL emitters.

11.
Int J Surg ; 110(9): 5396-5408, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38874470

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is a common complication of acute and severe neurosurgery. Remodeling of N6-methyladenosine (m6A) stabilization may be an attractive treatment option for neurological dysfunction after TBI. In the present study, the authors explored the epigenetic methylation of RNA-mediated NLRP3 inflammasome activation after TBI. METHODS: Neurological dysfunction, histopathology, and associated molecules were examined in conditional knockout (CKO) WTAP [flox/flox, Camk2a-cre] , WTAP flox/flox , and pAAV-U6-shRNA-YTHDF1-transfected mice. Primary neurons were used in vitro to further explore the molecular mechanisms of action of WTAP/YTHDF1 following neural damage. RESULTS: The authors found that WTAP and m6A levels were upregulated at an early stage after TBI, and conditional deletion of WTAP in neurons did not affect neurological function but promoted functional recovery after TBI. Conditional deletion of WTAP in neurons suppressed neuroinflammation at the TBI early phase: WTAP could directly act on NLRP3 mRNA, regulate NLRP3 mRNA m6A level, and promote NLRP3 expression after neuronal injury. Further investigation found that YTH domain of YTHDF1 could directly bind to NLRP3 mRNA and regulate NLRP3 protein expression. YTHDF1 mutation or silencing improved neuronal injury, inhibited Caspase-1 activation, and decreased IL-1ß levels. This effect was mediated via suppression of NLRP3 protein translation, which also reversed the stimulative effect of WTAP overexpression on NLRP3 expression and inflammation. CONCLUSIONS: Our results indicate that WTAP participates in neuronal damage by protein translation of NLRP3 in an m6A-YTHDF1-dependent manner after TBI and that WTAP/m6A/YTHDF1 downregulation therapeutics is a viable and promising approach for preserving neuronal function after TBI, which can provide support for targeted drug development.


Asunto(s)
Adenosina , Lesiones Traumáticas del Encéfalo , Proteína con Dominio Pirina 3 de la Familia NLR , Neuronas , Proteínas de Unión al ARN , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Ratones , Neuronas/metabolismo , Adenosina/metabolismo , Adenosina/análogos & derivados , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratones Noqueados , Biosíntesis de Proteínas , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Inflamasomas/metabolismo
12.
Phytomedicine ; 129: 155646, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733903

RESUMEN

BACKGROUND: Astragalus membranaceus (AM) shows potential therapeutic benefits for managing diabetic kidney disease (DKD), a leading cause of kidney failure with no cure. However, its comprehensive effects on renal outcomes and plausible mechanisms remain unclear. PURPOSE: This systematic review and meta-analysis aimed to synthesize the effects and mechanisms of AM on renal outcomes in DKD animal models. METHODS: Seven electronic databases were searched for animal studies until September 2023. Risk of bias was assessed based on SYRCLE's Risk of Bias tool. Standardized mean difference (SMD) or mean difference (MD) were estimated for the effects of AM on serum creatinine (SCr), blood urea nitrogen (BUN), albuminuria, histological changes, oxidative stress, inflammation, fibrosis and glucolipids. Effects were pooled using random-effects models. Heterogeneity was presented as I2. Subgroup analysis investigated treatment- and animal-related factors for renal outcomes. Publication bias was assessed using funnel plots and Egger's test. Sensitivity analysis was performed to assess the results' robustness. RevMan 5.3 and Stata MP 15 software were used for statistical analysis. RESULTS: Forty studies involving 1543 animals were identified for analysis. AM treatment significantly decreased SCr (MD = -19.12 µmol/l, 95 % CI: -25.02 to -13.23), BUN (MD = -6.72 mmol/l, 95 % CI: -9.32 to -4.12), urinary albumin excretion rate (SMD = -2.74, 95 % CI: -3.57, -1.90), histological changes (SMD = -2.25, 95 % CI: -3.19 to -1.32). AM treatment significantly improved anti-oxidative stress expression (SMD = 1.69, 95 % CI: 0.97 to 2.41), and decreased inflammation biomarkers (SMD = -3.58, 95 % CI: -5.21 to -1.95). AM treatment also decreased fibrosis markers (i.e. TGF-ß1, CTGF, collagen IV, Wnt4 and ß-catenin) and increased anti-fibrosis marker BMP-7. Blood glucose, lipids and kidney size were also improved compared with the DM control group. CONCLUSION: AM could improve renal outcomes and alleviate injury through multiple signaling pathways. This indicates AM may be an option to consider for the development of future DKD therapeutics.


Asunto(s)
Astragalus propinquus , Nefropatías Diabéticas , Modelos Animales de Enfermedad , Estrés Oxidativo , Animales , Albuminuria/tratamiento farmacológico , Astragalus propinquus/química , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Nefropatías Diabéticas/tratamiento farmacológico , Fibrosis/tratamiento farmacológico , Riñón/efectos de los fármacos , Riñón/patología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología
13.
Front Pharmacol ; 15: 1379338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38738180

RESUMEN

Background: Chinese patent medicine is commonly used in China as an important treatment mechanism to thwart the progression of chronic kidney disease (CKD) stages 3-5, among which Niaoduqing granules are a representative Chinese patent medicine; however, its long-term efficacy on CKD prognosis remains unclear. Methods: Patients were grouped according to Niaoduqing granule prescription duration (non-Niaoduqing granule (non-NDQ) group vs Niaoduqing granule (NDQ) group). Serum creatinine (SCr) variation was compared using a generalized linear mixed model (GLMM). Multivariate Cox regression models were constructed, adjusting for confounding factors, to explore the risk of composite outcomes (receiving renal replacement therapy (RRT) or having an estimated glomerular filtration rate (eGFR)<5 mL/min/1.73 m2, ≥50% decline in the eGFR from the baseline, and doubling of SCr) in individuals consuming Niaoduqing granules. Results: A total of 1,271 patients were included, with a median follow-up duration of 29.71 (12.10, 56.07) months. The mean SCr Z-scores for the non-NDQ group and NDQ group were -0.175 and 0.153, respectively, at baseline (p = 0.015). The coefficients of the NDQ group from visit 1 to visit 5 were -0.207 (95% CI: -0.346, -0.068, p = 0.004), -0.214 (95% CI: 0.389, -0.039, p = 0.017), -0.324 (95% CI: 0.538, -0.109, p = 0.003), -0.502 (95% CI: 0.761, -0.243, p = 0.000), and -0.252 (95% CI: 0.569, 0.065, p = 0.119), respectively. The survival probability was significantly higher in the NDQ group (p = 0.0039). Taking Niaoduqing granules was a significant protective factor for thwarting disease progression (model 1: HR 0.654 (95% CI 0.489-0.875, p = 0.004); model 2: HR 0.646 (95% CI 0.476, 0.877, p = 0.005); and model 3: HR 0.602 (95% CI 0.442, 0.820, p = 0.001)). Conclusion: The long-term use of Niaoduqing granules improved SCr variation and lowered the risk of CKD progression by 39.8%.

14.
J Neuroinflammation ; 21(1): 116, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702778

RESUMEN

BACKGROUND: Subarachnoid hemorrhage (SAH), a severe subtype of stroke, is characterized by notably high mortality and morbidity, largely due to the lack of effective therapeutic options. Although the neuroprotective potential of PPARg and Nrf2 has been recognized, investigative efforts into oroxin A (OA), remain limited in preclinical studies. METHODS: SAH was modeled in vivo through filament perforation in male C57BL/6 mice and in vitro by exposing HT22 cells to hemin to induce neuronal damage. Following the administration of OA, a series of methods were employed to assess neurological behaviors, brain water content, neuronal damage, cell ferroptosis, and the extent of neuroinflammation. RESULTS: The findings indicated that OA treatment markedly improved survival rates, enhanced neurological functions, mitigated neuronal death and brain edema, and attenuated the inflammatory response. These effects of OA were linked to the suppression of microglial activation. Moreover, OA administration was found to diminish ferroptosis in neuronal cells, a critical factor in early brain injury (EBI) following SAH. Further mechanistic investigations uncovered that OA facilitated the translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2) from the cytoplasm to the nucleus, thereby activating the Nrf2/GPX4 pathway. Importantly, OA also upregulated the expression of FSP1, suggesting a significant and parallel protective effect against ferroptosis in EBI following SAH in synergy with GPX4. CONCLUSION: In summary, this research indicated that the PPARg activator OA augmented the neurological results in rodent models and diminished neuronal death. This neuroprotection was achieved primarily by suppressing neuronal ferroptosis. The underlying mechanism was associated with the alleviation of cellular death through the Nrf2/GPX4 and FSP1/CoQ10 pathways.


Asunto(s)
Ferroptosis , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Hemorragia Subaracnoidea , Animales , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/patología , Hemorragia Subaracnoidea/complicaciones , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Ratones , Masculino , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/etiología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Lesiones Encefálicas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología
15.
Ecotoxicol Environ Saf ; 279: 116462, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38776784

RESUMEN

Tris (2-ethylhexyl) phosphate (TEHP) is a frequently used organophosphorus flame retardant with significant ecotoxicity and widespread human exposure. Recent research indicates that TEHP has reproductive toxicity. However, the precise cell mechanism is not enough understood. Here, by using testicular mesenchymal stromal TM3 cells as a model, we reveal that TEHP induces apoptosis. Then RNA sequencing analysis, immunofluorescence, and western blotting results show that THEP inhibits autophagy flux and enhances endoplasmic reticulum (ER) stress. Moreover, the activation of the ER stress is critical for TEHP-induced cell injury. Interestingly, TEHP-induced ER stress is contributed to autophagic flux inhibition. Furthermore, pharmacological inhibition of autophagy aggravates, and activation of autophagy attenuates TEHP-induced apoptosis. In summary, these findings indicate that TEHP triggers apoptosis in mouse TM3 cells through ER stress activation and autophagy flux inhibition, offering a new perspective on the mechanisms underlying TEHP-induced interstitial cytotoxicity in the mouse testis.


Asunto(s)
Apoptosis , Autofagia , Estrés del Retículo Endoplásmico , Retardadores de Llama , Células Intersticiales del Testículo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Autofagia/efectos de los fármacos , Animales , Masculino , Células Intersticiales del Testículo/efectos de los fármacos , Ratones , Apoptosis/efectos de los fármacos , Retardadores de Llama/toxicidad , Línea Celular
16.
Pharmacol Res ; 203: 107174, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580185

RESUMEN

The emergence of immune checkpoint inhibitors (ICIs) has revolutionized the clinical treatment for tumor. However, the low response rate of ICIs remains the major obstacle for curing patients and effective approaches for patients with primary or secondary resistance to ICIs remain lacking. In this study, immune stimulating agent unmethylated CG-enriched (CpG) oligodeoxynucleotide (ODN) was locally injected into the tumor to trigger a robust immune response to eradicate cancer cells, while anti-CD25 antibody was applied to remove immunosuppressive regulatory T cells, which further enhanced the host immune activity to attack tumor systematically. The combination of CpG and anti-CD25 antibody obtained notable regression in mouse melanoma model. Furthermore, rechallenge of tumor cells in the xenograft model has resulted in smaller tumor volume, which demonstrated that the combinational treatment enhanced the activity of memory T cells. Remarkably, this combinational therapy presented significant efficacy on multiple types of tumors as well and was able to prevent relapse of tumor partially. Taken together, our combinational immunotherapy provides a new avenue to enhance the clinical outcomes of patients who are insensitive or resistant to ICIs treatments.


Asunto(s)
Oligodesoxirribonucleótidos , Linfocitos T Reguladores , Animales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Oligodesoxirribonucleótidos/uso terapéutico , Oligodesoxirribonucleótidos/farmacología , Ratones , Ratones Endogámicos C57BL , Femenino , Humanos , Línea Celular Tumoral , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Subunidad alfa del Receptor de Interleucina-2/inmunología , Melanoma Experimental/inmunología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/terapia , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Vacunación , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
17.
J Hazard Mater ; 471: 134256, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640673

RESUMEN

A new method for the determination of 26 legacy and emerging per- and polyfluoroalkyl substances (PFASs) in marine sediment pore water was developed using online solid phase extraction coupled with liquid chromatography-tandem mass spectrometry. The proposed method requires only about 1 mL of pore water samples. Satisfactory recoveries of most target PFASs (83.55-125.30 %) were achieved, with good precision (RSD of 1.09-16.53 %), linearity (R2 ≥ 0.990), and sensitivity (MDLs: 0.05 ng/L-5.00 ng/L for most PFASs). Subsequently, the method was applied to determine PFASs in the sediment pore water of five mariculture bays in the Bohai and Yellow Seas of China for the first time. Fifteen PFASs were detected with total concentrations ranging from 150.23 ng/L to 1838.48 ng/L (mean = 636.80 ng/L). The ∑PFASs and PFOA concentrations in sediment pore water were remarkably higher than those in surface seawater (tens of ng/L), indicating that the potential toxic effect of PFASs on benthic organisms may be underestimated. PFPeA was mainly distributed in pore water, and the partition of PFHpA (50.99 %) and PFOA (49.01 %) was almost equal in the solid and liquid phases. The proportions of all other PFASs partitioned in marine sediments were significantly higher than those in pore water.

18.
Neural Netw ; 175: 106319, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640698

RESUMEN

To enhance deep learning-based automated interictal epileptiform discharge (IED) detection, this study proposes a multimodal method, vEpiNet, that leverages video and electroencephalogram (EEG) data. Datasets comprise 24 931 IED (from 484 patients) and 166 094 non-IED 4-second video-EEG segments. The video data is processed by the proposed patient detection method, with frame difference and Simple Keypoints (SKPS) capturing patients' movements. EEG data is processed with EfficientNetV2. The video and EEG features are fused via a multilayer perceptron. We developed a comparative model, termed nEpiNet, to test the effectiveness of the video feature in vEpiNet. The 10-fold cross-validation was used for testing. The 10-fold cross-validation showed high areas under the receiver operating characteristic curve (AUROC) in both models, with a slightly superior AUROC (0.9902) in vEpiNet compared to nEpiNet (0.9878). Moreover, to test the model performance in real-world scenarios, we set a prospective test dataset, containing 215 h of raw video-EEG data from 50 patients. The result shows that the vEpiNet achieves an area under the precision-recall curve (AUPRC) of 0.8623, surpassing nEpiNet's 0.8316. Incorporating video data raises precision from 70% (95% CI, 69.8%-70.2%) to 76.6% (95% CI, 74.9%-78.2%) at 80% sensitivity and reduces false positives by nearly a third, with vEpiNet processing one-hour video-EEG data in 5.7 min on average. Our findings indicate that video data can significantly improve the performance and precision of IED detection, especially in prospective real clinic testing. It suggests that vEpiNet is a clinically viable and effective tool for IED analysis in real-world applications.


Asunto(s)
Aprendizaje Profundo , Electroencefalografía , Epilepsia , Grabación en Video , Humanos , Electroencefalografía/métodos , Grabación en Video/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Adolescente , Redes Neurales de la Computación , Adulto Joven , Niño
19.
Acta Pharm Sin B ; 14(4): 1661-1676, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572101

RESUMEN

Diabetic nephropathy (DN) is a severe complication of diabetes, characterized by changes in kidney structure and function. The natural product rosmarinic acid (RA) has demonstrated therapeutic effects, including anti-inflammation and anti-oxidative-stress, in renal damage or dysfunction. In this study, we characterized the heterogeneity of the cellular response in kidneys to DN-induced injury and RA treatment at single cell levels. Our results demonstrated that RA significantly alleviated renal tubular epithelial injury, particularly in the proximal tubular S1 segment and on glomerular epithelial cells known as podocytes, while attenuating the inflammatory response of macrophages, oxidative stress, and cytotoxicity of natural killer cells. These findings provide a comprehensive understanding of the mechanisms by which RA alleviates kidney damage, oxidative stress, and inflammation, offering valuable guidance for the clinical application of RA in the treatment of DN.

20.
Sci Total Environ ; 926: 171599, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38490410

RESUMEN

Estuarine-offshore sediments accumulate substantial particulate organic matter, containing organic sulfur as a key component. However, the distribution and sources of organic sulfur in such environments remain poorly understood. This study investigated organic sulfur in the Yangtze River Estuary and adjacent East China Sea. Dissolved organic sulfur varied from 0.65 to 1.99 µmol/L (molar S:C 0.006-0.018), while particulate organic sulfur ranged from 0.42 to 2.69 µmol/L (molar S:C 0.007-0.082). Sedimentary organic sulfur exhibited a similar molar S:C ratio (0.014-0.071) to particulate organic sulfur in bottom water, implying that particulate matter deposition is a potential source. Furthermore, sediments exposed to frequent hypoxia harbored significantly higher organic sulfur and S:C values compared to non-hypoxic areas. Laboratory incubation experiments revealed the underlying mechanism: sustained activity of sulfate-reducing bacteria in hypoxic sediments led to a substantial increase in sedimentary organic sulfur (from 15 to 53 µmol/g) within 600 days. This microbially driven sulfurization rendered over 90 % of the organic sulfur resistant to acid hydrolysis. Therefore, this study demonstrates that, alongside particle deposition, microbial sulfurization significantly contributes to organic sulfur enrichment and likely promotes organic matter preservation in estuarine-offshore sediments, particularly under hypoxic conditions. This finding advances our understanding of organic sulfur sources in these vital ecosystems.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Azufre , Estuarios , Material Particulado , China , Sedimentos Geológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA