Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Ethnopharmacol ; 334: 118539, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986754

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Anemarrhena asphodeloides Bunge (Ane) and Phellodendron chinense C. K. Schneid (Phe) is classical herb pair in traditional Chinese medicine, commonly used to ameliorate the symptoms of Benign Prostatic Hyperplasia (BPH). However, the mechanisms underlying this effect are remained indistinct. AIM OF THE STUDY: This study aimed to clarify potential therapeutic mechanisms of herb pair on BPH from a metabolic perspective. MATERIALS AND METHODS: Testosterone propionate-induced BPH rat model was established, prostatic parameters, histopathology and the levels of serum dihydrotestosterone (DHT) and testosterone (T) were used to evaluate the pharmacological effect of the herb pair on BPH. Subsequently, untargeted metabolomics of prostate tissues samples was performed by UHPLC-Q-Exactive-Orbitrap-MS, followed by multivariate statistical analysis. Targeted metabolomics by UHPLC-QQQ-MS was further utilized to verify and supplement the results of lipids and amino acids found by untargeted metabolomics, clarifying the relationship between disease, herbal pair and metabolism pathway. RESULTS: The study found that Ane-Phe could relieve the progression of BPH and regulate metabolic imbalances. The levels of 13 metabolites decreased and 11 increased in prostatic tissues including glycerolphospholipid, arachidonic acid, citric acid and so on, these altered metabolites were primarily associated with TCA cycle, arachidonic acid metabolism, lipid metabolism and amino acid metabolism. Furthermore, targeted metabolomics was fulfilled to further analyze the lipid metabolism disorders, the levels of 5 lipids in serum and 21 in prostatic tissues were changed in the herb pair group compared to the model group, which closely related to glycerophospholipid, sphingolipid and glycerolipid metabolism. Besides, amino acid metabolism may be regulated by activating arginine metabolism pathway. CONCLUSIONS: In this study, the combination of untargeted metabolomics and targeted metabolomics was applied to explore therapeutic mechanisms of Ane-Phe on BPH. In summary, Ane-Phe could improve the levels of endogenous metabolites by regulating multiple metabolic pathways and plays a role in energy supply, anti-inflammation and oxidative stress in BPH treatment.


Asunto(s)
Anemarrhena , Metabolómica , Phellodendron , Hiperplasia Prostática , Ratas Sprague-Dawley , Masculino , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patología , Animales , Phellodendron/química , Anemarrhena/química , Ratas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Próstata/efectos de los fármacos , Próstata/metabolismo , Próstata/patología , Modelos Animales de Enfermedad , Cromatografía Líquida de Alta Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA