Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Environ Int ; 190: 108928, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39106633

RESUMEN

PM2.5 pollution has been associated with the incidence of lung cancer, but the underlying mechanism is still unclear. PIWI-interacting RNAs (piRNAs), initially identified in germline cells, have emerged as a novel class of small non-coding RNAs (26 - 32 nucleotides) with diverse functions in various diseases, including cancer. However, the role and mechanism of piRNAs in the development of PM2.5-induced lung cancer remain to be clarified. In the presented study, we used a PM2.5-induced malignant transformation cell model to analyze the change of piRNA profiles. Among the disturbed piRNAs, piR-27222 was identified as an oncogene that inhibited cell death in a m6A-dependent manner. Mechanistically, we found that piR-27222 could deubiquitinate and stabilize eIF4B by directly binding to eIF4B and reducing its interaction with PARK2. The enhanced expression of eIF4B, in turn, promoted the expression of WTAP, leading to increased m6A modification in the Casp8 transcript. Consequently, the stability of Casp8 transcripts was reduced, rendering lung cancer cells resistant to PANoptosis. Collectively, our findings reveal that PM2.5 exposure up-regulated piR-27222 expression, which could affect EIF4B/WTAP/m6A axis, thereby inhibiting PANoptosis of cells and promoting lung cancer. Our study provides new insights into understanding the epigenetic mechanisms underlining PM2.5-induced lung cancer.


Asunto(s)
Neoplasias Pulmonares , Material Particulado , ARN Interferente Pequeño , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/patología , Material Particulado/toxicidad , Humanos , Contaminantes Atmosféricos/toxicidad
2.
Heliyon ; 10(15): e34624, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170418

RESUMEN

The influence of the sub-nano Ni3P and Cu3P phases on the microstructure, mechanical properties, and strengthening mechanism of Cu-20Pb-5Sn-xP (x = 0,0.05,0.1,0.3,0.5) alloy were discussed under the addition of P to obtain a new Pb-Sn bronze alloy applying for bimetallic cylinder block. The results showed that the tensile strength and hardness of the Pb-Sn bronze alloy increase with the P contents, while the elongation increased first and then decreased. The main strengthen mechanism was that sub-nano Ni3P and Cu3P phases dispersed in the matrix, hindering the movement of dislocations during deformation. Additionally, the grain refinement also contributed to the improvement of mechanical properties. The Ni3P phase is easier to form than the Cu3P phase. And it is easier to combine with the matrix and more stable. The Ni3P and Cu3P phases were studied by using different characterization techniques, such as OM, SEM, EDS, XRD, TEM and First-principles, Phase diagram calculation method. When P is added to the alloy, the Ni3P phase first appears in the alloy, and when the P content increases to more than 0.3 wt%, the Cu3P phase begins to appear. This is because the Ni3P phase is easier to form than the Cu3P phase and is more stable. Only after part of P reacts with Ni dissolved in copper to form Ni3P, the remaining P and Cu can form Cu3P.

3.
Neural Regen Res ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38993124

RESUMEN

ABSTRACT: We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury. While exosomes are recognized as playing a pivotal role in neural stem cells exocrine function, their precise function in spinal cord injury remains unclear. To investigate the role of exosomes generated following neural stem cells necroptosis after spinal cord injury, we conducted single-cell RNA sequencing and validated that neural stem cells originate from ependymal cells and undergo necroptosis in response to spinal cord injury. Subsequently, we established an in vitro necroptosis model using neural stem cells isolated from embryonic mice aged 16-17 days and extracted exosomes. The results showed that necroptosis did not significantly impact the fundamental characteristics or number of exosomes. Transcriptome sequencing of exosomes in necroptosis group identified 108 differentially expressed messenger RNAs, 104 long non-coding RNAs, 720 circular RNAs, and 14 microRNAs compared with the control group. Construction of a competing endogenous RNA network identified the following hub genes: tuberous sclerosis 2 (Tsc2), solute carrier family 16 member 3 (Slc16a3), and forkhead box protein P1 (Foxpl). Notably, a significant elevation in TSC2 expression was observed in spinal cord tissues following spinal cord injury. TSC2-positive cells were localized around SRY-box transcription factor 2-positive cells within the injury zone. Furthermore, in vitro analysis revealed increased TSC2 expression in exosomal receptor cells compared with other cells. Further assessment of cellular communication following spinal cord injury showed that Tsc2 was involved in ependymal cellular communication at 1 and 3 days post-injury through the epidermal growth factor and midkine signaling pathways. In addition, Slc16a3 participated in cellular communication in ependymal cells at 7 days post-injury via the vascular endothelial growth factor and macrophage migration inhibitory factor signaling pathways. Collectively, these findings confirm that exosomes derived from neural stem cells undergoing necroptosis play an important role in cellular communication after spinal cord injury and induce TSC2 upregulation in recipient cells.

4.
Front Pediatr ; 12: 1382172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725982

RESUMEN

Background: The correlation of clinical characteristics of cerebral palsy (CP) and the magnetic resonance imaging classification system (MRICS) for (CP) is inconsistent. Specifically, the variance in rehabilitation potential across MRICS remains underexplored. Aims: To investigate the clinical characteristics and potential for rehabilitation in children with CP based on MRICS. Materials and methods: Children with CP admitted to the Department of Rehabilitation, Children's Hospital of Chongqing Medical University between 2017 and 2021 were included in the study. Qualified cases underwent a follow-up period of at least one year. The clinical characteristics of CP among different MRICS were analyzed, then the rehabilitation potential was explored by a retrospective cohort study. Results: Among the 384 initially enrolled children, the male-to-female ratio was 2.3:1, and the median age of diagnosis was 6.5 months (interquartile range: 4-12). The most prevalent MRICS categorization was predominant white matter injury (40.6%), followed by miscellaneous (29.2%) and predominant gray matter injury (15.6%). For the predominant white matter injury and miscellaneous categories, spastic diplegia emerged as the leading subtype of CP, with incidences of 59.6% and 36.6%, respectively, while mixed CP (36.7%) was the most common type in children with predominant gray matter. Notably, 76.4% of children with predominant white matter injury were classified as levels I-III on the gross motor function classification system (GMFCS), indicating significantly less severity than other groups (χ2 = 12.438, p = 0.013). No significant difference across MRICS categories was observed for the manual ability classification system (MACS) (H = 8.176, p = 0.085). Rehabilitation potential regarding fine motor function and adaptability based on Gesell assessment was dependent on MRICS over the follow-up period. Children with normal MRI scans exhibited superior rehabilitation outcomes. Commencing rehabilitation at an earlier stage produced consistent and beneficial results in terms of fine motor function and adaptability across all MRICS categories. Moreover, participants below 2 years of age demonstrated enhanced rehabilitation potential regarding fine motor outcomes and adaptability within the MRICS framework. Conclusion: MRICS displayed a significant association with clinical characteristics and rehabilitation efficacy in children with CP.

5.
Front Psychiatry ; 15: 1344850, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803676

RESUMEN

Objective: To test the psychometric properties of the Chinese version of the biological rhythms interview of assessment in neuropsychiatry (C-BRIAN) in a group of young adults with and without depressive symptoms. Methods: Three hundred and seventy-eight university students were recruited as participants. Based on the scores from Center for Epidemiological Survey Depression Scale (CES-D), students were divided into the depressed group and healthy group. Explorative factor analysis was applied to assess the construct validity of the C-BRIAN. The Pittsburgh Sleep Quality Index (PSQI) and CES-D were compared with the C-BRIAN to test the convergent validity. The internal consistency of the C-BRIAN was also examined. Results: Three factors were extracted (activities, eating patterns, and sleep factors) explaining 63.9% of the total variance. The internal consistencies were very good with a coefficient of 0.94 (overall) and 0.89-0.91 for three factors. The domains of activities, eating patterns, and sleep were moderately correlated with PSQI (r=0.579) and CES-D (r=0.559) (ps<0.01). Conclusion: Our findings suggest that C-BRIAN has good validity and reliability which can be used to assess the biological rhythm in the young adult population with depressive symptoms. C-BRIAN would be a reliable tool to detect depressive symptoms for timely prevention and intervention in the community.

6.
Plant Sci ; 344: 112083, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38588982

RESUMEN

Due to the extended generation cycle of trees, the breeding process for forest trees tends to be time-consuming. Genetic engineering has emerged as a viable approach to expedite the genetic breeding of forest trees. However, current genetic engineering techniques employed in forest trees often utilize continuous expression promoters such as CaMV 35S, which may result in unintended consequences by introducing genes into non-target tissues. Therefore, it is imperative to develop specific promoters for forest trees to facilitate targeted and precise design and breeding. In this study, we utilized single-cell RNA-Seq data and co-expression network analysis during wood formation to identify three vascular tissue-specific genes in poplar, PP2-A10, PXY, and VNS07, which are expressed in the phloem, cambium/expanding xylem, and mature xylem, respectively. Subsequently, we cloned the promoters of these three genes from '84K' poplar and constructed them into a vector containing the eyGFPuv visual selection marker, along with the 35S mini enhancer to drive GUS gene expression. Transgenic poplars expressing the ProPagPP2-A10::GUS, ProPagPXY::GUS, and ProPagVNS07::GUS constructs were obtained. To further elucidate the tissue specificity of these promoters, we employed qPCR, histochemical staining, and GUS enzyme activity. Our findings not only establish a solid foundation for the future utilization of these promoters to precisely express of specific functional genes in stems but also provide a novel perspective for the modular breeding of forest trees.


Asunto(s)
Populus , Regiones Promotoras Genéticas , Populus/genética , Populus/metabolismo , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Xilema/genética , Xilema/metabolismo , Floema/genética , Floema/metabolismo , Genes de Plantas
7.
Plant Sci ; 344: 112106, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663480

RESUMEN

PXY (Phloem intercalated with xylem) is a receptor kinase required for directional cell division during the development of plant vascular tissue. Drought stress usually affects plant stem cell division and differentiation thereby limiting plant growth. However, the role of PXY in cambial activities of woody plants under drought stress is unclear. In this study, we analyzed the biological functions of two PXY genes (PagPXYa and PagPXYb) in poplar growth and development and in response to drought stress in a hybrid poplar (Populus alba × P. glandulosa, '84K'). Expression analysis indicated that PagPXYs, similar to their orthologs PtrPXYs in Populus trichocarpa, are mainly expressed in the stem vascular system, and related to drought. Interestingly, overexpression of PagPXYa and PagPXYb in poplar did not have a significant impact on the growth status of transgenic plants under normal condition. However, when treated with 8 % PEG6000 or 100 mM H2O2, PagPXYa and PagPXYb overexpressing lines consistently exhibited more cambium cell layers, fewer xylem cell layers, and enhanced drought tolerance compared to the non-transgenic control '84K'. In addition, PagPXYs can alleviate the damage caused by H2O2 to the cambium under drought stress, thereby maintaining the cambial division activity of poplar under drought stress, indicating that PagPXYs play an important role in plant resistance to drought stress. This study provides a new insight for further research on the balance of growth and drought tolerance in forest trees.


Asunto(s)
Cámbium , Sequías , Proteínas de Plantas , Populus , Especies Reactivas de Oxígeno , Populus/genética , Populus/fisiología , Populus/metabolismo , Populus/crecimiento & desarrollo , Cámbium/genética , Cámbium/crecimiento & desarrollo , Cámbium/fisiología , Cámbium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantas Modificadas Genéticamente/genética , Homeostasis , Regulación de la Expresión Génica de las Plantas , Xilema/metabolismo , Xilema/fisiología , Xilema/genética , Estrés Fisiológico , Resistencia a la Sequía
8.
Bioact Mater ; 35: 135-149, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38312519

RESUMEN

Spinal cord injury (SCI) causes neuroinflammation, neuronal death, and severe axonal connections. Alleviating neuroinflammation, protecting residual cells and promoting neuronal regeneration via endogenous neural stem cells (eNSCs) represent potential strategies for SCI treatment. Extracellular vesicles (EVs) released by mesenchymal stem cells have emerged as pathological mediators and alternatives to cell-based therapies following SCI. In the present study, EVs isolated from untreated (control, C-EVs) and TGF-ß1-treated (T-EVs) mesenchymal stem cells were injected into SCI mice to compare the therapeutic effects and explore the underlying mechanisms. Our study demonstrated for the first time that the application of T-EVs markedly enhanced the proliferation and antiapoptotic ability of NSCs in vitro. The infusion of T-EVs into SCI mice increased the shift from the M1 to M2 polarization of reactive microglia, alleviated neuroinflammation, and enhanced the neuroprotection of residual cells during the acute phase. Moreover, T-EVs increased the number of eNSCs around the epicenter. Consequently, T-EVs further promoted neurite outgrowth, increased axonal regrowth and remyelination, and facilitated locomotor recovery in the chronic stage. Furthermore, the use of T-EVs in Rictor-/- SCI mice (conditional knockout of Rictor in NSCs) showed that T-EVs failed to increase the activation of eNSCs and improve neurogenesis sufficiently, which suggested that T-EVs might induce the activation of eNSCs by targeting the mTORC2/Rictor pathway. Taken together, our findings indicate the prominent role of T-EVs in the treatment of SCI, and the therapeutic efficacy of T-EVs for SCI treatment might be optimized by enhancing the activation of eNSCs via the mTORC2/Rictor signaling pathway.

9.
Int J Biol Macromol ; 263(Pt 2): 130471, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417753

RESUMEN

Plant AT-rich sequence and zinc-binding (PLATZ) proteins are a class of plant-specific transcription factor that play a crucial role in plant growth, development, and stress response. However, the evolutionary relationship of the PLATZ gene family across the Populus genus and the biological functions of the PLATZ protein require further investigation. In this study, we identified 133 PLATZ genes from six Populus species belonging to four Populus sections. Synteny analysis of the PLATZ gene family indicated that whole genome duplication events contributed to the expansion of the PLATZ family. Among the nine paralogous pairs, the protein structure of PtrPLATZ14/18 pair exhibited significant differences with others. Through gene expression patterns and co-expression networks, we discovered divergent expression patterns and sub-networks, and found that the members of pair PtrPLATZ14/18 might play different roles in the regulation of macromolecule biosynthesis and modification. Furthermore, we found that PtrPLATZ14 regulates poplar leaf development by affecting cell size control genes PtrGRF/GIF and PtrTCP. In conclusion, our study provides a theoretical foundation for exploring the evolution relationships and functions of the PLATZ gene family within Populus species and provides insights into the function and potential mechanism of PtrPLATZ14 in leaf morphology that were diverse across the Populus genus.


Asunto(s)
Populus , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Familia de Multigenes , Filogenia , Populus/genética , Populus/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/química
10.
Sci Adv ; 10(5): eadh8601, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295178

RESUMEN

Modern machine learning models toward various tasks with omic data analysis give rise to threats of privacy leakage of patients involved in those datasets. Here, we proposed a secure and privacy-preserving machine learning method (PPML-Omics) by designing a decentralized differential private federated learning algorithm. We applied PPML-Omics to analyze data from three sequencing technologies and addressed the privacy concern in three major tasks of omic data under three representative deep learning models. We examined privacy breaches in depth through privacy attack experiments and demonstrated that PPML-Omics could protect patients' privacy. In each of these applications, PPML-Omics was able to outperform methods of comparison under the same level of privacy guarantee, demonstrating the versatility of the method in simultaneously balancing the privacy-preserving capability and utility in omic data analysis. Furthermore, we gave the theoretical proof of the privacy-preserving capability of PPML-Omics, suggesting the first mathematically guaranteed method with robust and generalizable empirical performance in protecting patients' privacy in omic data.


Asunto(s)
Algoritmos , Privacidad , Humanos , Análisis de Datos , Aprendizaje Automático , Tecnología
11.
Eur Radiol ; 34(2): 736-744, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37581658

RESUMEN

OBJECTIVE: To investigate the feasibility and effectiveness of applying intraoperative ultrasound (IOUS) to evaluate spinal canal expansion in patients undergoing French-door cervical laminoplasty (FDCL). MATERIALS AND METHODS: Twenty-five patients who underwent FDCL for multilevel degenerative cervical myelopathy were prospectively recruited. Formulae describing the relationship between laminoplasty opening angle (LOA) and laminoplasty opening size, the increase in sagittal canal diameter and the spinal canal area were deduced with trigonometric functions. The LOA was measured with IOUS imaging during surgery, and other spinal canal parameters were assessed. Actual spinal canal enlargement was verified on postoperative CT images. Linear correlation analysis and Bland‒Altman analysis were used to evaluate correlation and agreement between the intraoperative and postoperative measurements. RESULTS: The LOA at C5 measured with IOUS was 27.54 ± 3.12°, and it was 27.23 ± 3.02° on postoperative CT imaging. Linear correlation analysis revealed a significant correlation between IOUS and postoperative CT measurements (r = 0.88; p < 0.01). Bland-Altman plots showed good agreement between these two methods, with a mean difference of 0.30°. For other spinal canal expansion parameter measurements, correlation analysis showed a moderate to a high degree of correlation (p < 0.01), and Bland-Altman analysis indicated good agreement. CONCLUSION: In conclusion, during the French-door cervical laminoplasty procedure, application of IOUS can accurately evaluate spinal canal expansion. This innovative method may be helpful in improving surgical accuracy by enabling the operator to measure and determine canal enlargement during surgery, leading to ideal clinical outcomes and fewer postoperative complications. CLINICAL RELEVANCE STATEMENT: The use of intraoperative ultrasonography to assess spinal canal expansion following French-door cervical laminoplasty may improve outcomes for patients undergoing this procedure by providing more accurate measurements of spinal canal expansion. KEY POINTS: • Spinal canal expansion after French-door cervical laminoplasty substantially influences operative prognosis; insufficient or excessive lamina opening may result in unexpected outcomes. • Prediction of spinal canal expansion during surgery was previously impracticable, but based on this study, intraoperative ultrasonography offers an innovative approach and strongly agrees with postoperative CT measurement. • Since this is the first research to offer real-time canal expansion guidance for cervical laminoplasty, it may improve the accuracy of the operation and produce ideal clinical outcomes with fewer postoperative complications.


Asunto(s)
Laminoplastia , Enfermedades de la Médula Espinal , Humanos , Laminoplastia/efectos adversos , Laminoplastia/métodos , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Canal Medular/diagnóstico por imagen , Canal Medular/cirugía , Ultrasonografía , Complicaciones Posoperatorias/etiología , Resultado del Tratamiento , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/cirugía , Enfermedades de la Médula Espinal/complicaciones , Estudios Retrospectivos
12.
Biochem Pharmacol ; : 115936, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38012969

RESUMEN

Continuous (chronic or sub-chronic) alcohol consumption induces a metabolic byproduct known as ketone bodies, and the accumulation of ketones leads to a life-threatening syndrome called alcoholic ketoacidosis. However, the mechanism underlining the physiological effects of ketone accumulation in alcoholic liver disease (ALD) is still in its infancy. Here, we discovered that mitochondrial acetyl-CoA accumulation was diverted into the ketogenesis pathway in ethanol-fed mice and ethanol-exposed hepatocytes. Unexpectedly, global protein lysine ß-hydroxybutyrylation (Kbhb) was induced in response to increased ketogenesis-derived ß-hydroxybutyrate (BHB) levels both in hepatocytes and in livers of mice. Focusing on the solute carrier family (SLCs), we found that SLC25A5 presented obvious Kbhb at lysine residues 147 and 166. Kbhb modifications at these two lysine residues stabilized SLC25A5 expression by blocking ubiquitin-proteasome pathway. Subsequent mutation analysis revealed that Kbhb of SLC25A5 at K147 and K166 had site-specific regulatory roles by increasing peroxisome proliferator activated receptor gamma (PPARγ) expression, which further promoting lipogenesis. Additionally, 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 (HMGCS2), a rate-limiting enzyme for BHB production, was profoundly induced by ethanol exposure, and knockout of Hmgcs2 with CRISPR/Cas9 attenuated SLC25A5 Kbhb. Together, our study demonstrated a widespread Kbhb landscape under ethanol exposure and clarified a physiological effect of Kbhb modification on liver lipid accumulation.

13.
Sensors (Basel) ; 23(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37960455

RESUMEN

"Three straight and two flat" is the inevitable demand when realizing the intelligent mining of a fully mechanized mining face. To address the crucial technical issue of lacking accurate perception of the shape of the scraper conveyor during intelligent coal mining, a three-dimensional curvature sensor involving fiber Bragg grating (FBG) is used as a perceptive tool to conduct curve reconstruction research based on different local motion frames and to reconstruct the shape of the scraper conveyor. Firstly, the formation process of the 'S'-shaped bending section of the scraper conveyor during the pushing process is determined. Based on the FBG sensing principle, a mathematical model between the variation in the central wavelength and the strain and curvature is established, and the cubic B-spline interpolation method is employed to continuously process the obtained discrete curvature. Secondly, based on differential geometry, a spatial curve reconstruction algorithm based on the Frenet moving frame is derived, and the shape curve prediction interpolation model is built based on a gated recurrent unit (GRU) model, which reduces the impact of the decrease in curve reconstruction accuracy caused by damage to some grating measuring points. Finally, an experimental platform was designed and built, and sensors with curvature radii of 6 m, 7 m, and 8 m were tested. The experimental results showed that the reconstructed curve was essentially consistent with the actual shape, and the absolute error at the end was about 2 mm. The feasibility of this reconstruction algorithm in engineering has been proven, and this is of great significance in achieving shape curve perception and straightness control for scraper conveyors.

14.
Genome Med ; 15(1): 99, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993966

RESUMEN

Arabs represent 5% of the world population and have a high prevalence of common disease, yet remain greatly underrepresented in genome-wide association studies, where only 1 in 600 individuals are Arab. We highlight the persistent and unaddressed underrepresentation of Arabs in genomic databases and discuss its impact on public health genomics and missed opportunities for biological discovery.


Asunto(s)
Árabes , Estudio de Asociación del Genoma Completo , Humanos , Árabes/genética , Genoma , Genómica
15.
Nat Commun ; 14(1): 6535, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852978

RESUMEN

Arabs account for 5% of the world population and have a high burden of cardiometabolic disease, yet clinical utility of polygenic risk prediction in Arabs remains understudied. Among 5399 Arab patients, we optimize polygenic scores for 10 cardiometabolic traits, achieving a performance that is better than published scores and on par with performance in European-ancestry individuals. Odds ratio per standard deviation (OR per SD) for a type 2 diabetes score was 1.83 (95% CI 1.74-1.92), and each SD of body mass index (BMI) score was associated with 1.18 kg/m2 difference in BMI. Polygenic scores associated with disease independent of conventional risk factors, and also associated with disease severity-OR per SD for coronary artery disease (CAD) was 1.78 (95% CI 1.66-1.90) for three-vessel CAD and 1.41 (95% CI 1.29-1.53) for one-vessel CAD. We propose a pragmatic framework leveraging public data as one way to advance equitable clinical implementation of polygenic scores in non-European populations.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , Árabes/genética , Factores de Riesgo , Enfermedad de la Arteria Coronaria/genética , Fenotipo , Predisposición Genética a la Enfermedad
16.
Hepatology ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37820269

RESUMEN

BACKGROUND AND AIMS: DILI accounts for more than half of acute liver failure cases in the United States and is a major health care issue for the public worldwide. As investigative toxicology is playing an evolving role in the pharmaceutical industry, mechanistic insights into drug hepatotoxicity can facilitate drug development and clinical medication. METHODS: By integrating multisource datasets including gene expression profiles of rat livers from open TG-GATE database and DrugMatrix, drug labels from FDA Liver Toxicity Knowledge Base, and clinical reports from LiverTox, and with the employment of bioinformatic and computational tools, this study developed an approach to characterize and predict DILI based on the molecular understanding of the processes (toxicity pathways). RESULTS: A panel of 11 pathways widely covering biological processes and stress responses was established using a training set of six positive and one negative DILI drugs from open TG-GATEs. An entropy weight method-based model was developed to weight responsive genes within a pathway, and an interpretable machine-learning (ML) model XGBoot-SHAP was trained to rank the importance of pathways to the panel activity. The panel activity was proven to differentiate between injured and noninjured sample points and characterize DILI manifestation using six training drugs. Next, the model was tested using an additional 89 drugs (61 positives + 28 negatives), and a precision of 86% and higher can be achieved. CONCLUSIONS: This study provides a novel approach to mechanisms-driven prediction modeling, as well as big data integration for insights into pharmacology and other human biology areas.

17.
Sensors (Basel) ; 23(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37766011

RESUMEN

The foundation of intelligent collaborative control of a shearer, scraper conveyor, and hydraulic support (three-machines) is to achieve the precise perception of the status of the three-machines and the full integration of information between the equipment. In order to solve the problems of information isolation and non-flow, independence between equipment, and weak cooperation of three-machines due to an insufficient fusion of perception data, a fusion method of the equipment's state perception system on the intelligent working surface was proposed. Firstly, an intelligent perception system for the state of the three-machines in the working face was established based on fiber optic sensing technology and inertial navigation technology. Then, the datum coordinate system is created on the working surface to uniformly describe the status of the three-machines and the spatial position relationship between the three-machines is established using a scraper conveyor as a bridge so that the three-machines become a mutually restricted and collaborative equipment system. Finally, an indoor test was carried out to verify the relational model of the spatial position of the three-machines. The results indicate that the intelligent working face three-machines perception system based on fiber optic sensing technology and inertial navigation technology can achieve the fusion of monitoring data and unified expression of equipment status. The research results provide an important reference for building an intelligent perception, intelligent decision-making, and automatic execution system for coal mines.

18.
iScience ; 26(10): 107837, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736048

RESUMEN

Alcohol-associated liver disease is a prevalent chronic liver disease caused by excessive ethanol consumption. This study aims to investigate the role of miR-150 in regulating hepatic lipid homeostasis in alcoholic fatty liver (AFL). miR-150 was mainly distributed in the nucleus of hepatocytes and correlated with the degree of liver injury. The decreased expression of miR-150 observed in AFL was a compensatory response to ethanol-induced hepatic steatosis. Overexpression of miR-150 facilitated hepatic lipid accumulation in cellulo and exacerbated ethanol-induced liver steatosis in vivo. In silico analysis identified perilipin-2 (PLIN2) as a potential target gene of miR-150. miR-150 activated PLIN2 transcription by directly binding the RNA transcripts overlapping PLIN2 promoter and facilitating the recruitment of DNA helicase DHX9 and RNA polymeraseⅡ. Overall, our study provides fresh insights into the homeostasis regulation of hepatic steatosis induced by ethanol and identifies miR-150 as a pro-steatosis effector driving transcriptional PLIN2 gene activation.

19.
Cell Death Discov ; 9(1): 311, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626043

RESUMEN

Alcohol abuse is a significant cause of global morbidity and mortality, with alcoholic liver disease (ALD) being a common consequence. The pathogenesis of ALD involves various cellular processes, including oxidative stress, inflammation, and hepatic cell death. Recently, ferroptosis, an iron-dependent form of programmed cell death, has emerged as a potential mechanism in many diseases. However, the specific involvement and regulatory mechanisms of ferroptosis in ALD remain poorly understood. Here we aimed to investigate the presence and mechanism of alcohol-induced ferroptosis and the involvement of miRNAs in regulating ferroptosis sensitivity. Our findings revealed that long-term ethanol feeding induced ferroptosis in male mice, as evidenced by increased expression of ferroptosis-related genes, lipid peroxidation, and labile iron accumulation in the liver. Furthermore, we identified dysregulation of the methionine cycle and transsulfuration pathway, leading to severe glutathione (GSH) exhaustion and indirect deactivation of glutathione peroxidase 4 (GPx4), a critical enzyme in preventing ferroptosis. Additionally, we identified miR-214 as a ferroptosis regulator in ALD, enhancing hepatocyte ferroptosis by transcriptionally activating the expression of ferroptosis-driver genes. Our study provides novel insights into the involvement and regulatory mechanisms of ferroptosis in ALD, highlighting the potential therapeutic implications of targeting ferroptosis and miRNAs in ALD management.

20.
J Affect Disord ; 340: 100-112, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543111

RESUMEN

BACKGROUND: Sleep deprivation (SD) has been suggested to have a rapid antidepressant effect. There is substantial evidence that neuroinflammation and neuroplasticity play critical roles in the pathophysiology and treatment of depression. Here, we investigated the mechanisms of SD to alleviate depression-like behaviors of mice, and the role of neuroinflammation and neuroplasticity in it. METHODS: Adult male C57BL/6 J mice were subjected to chronic restraint stress (CRS) for 6 weeks, and 6 h of SD were administrated. Behavioral tests were performed to measure depression-like behaviors. RNA-sequencing and bioinformatic analysis were performed in the anterior cingulate cortex (ACC). The differentially expressed genes were confirmed by quantitative real-time polymerase chain reaction (RT-qPCR). Neuroinflammation and neuroplasticity were measured by western blotting and immunofluorescence staining. RESULTS: Behavioral tests demonstrated that SD swiftly attenuated the depression-like behaviors induced by CRS. RNA-sequencing identified the upregulated immune and inflammatory pathways after CRS exposure were downregulated by SD. Furthermore, SD reversed the levels of immune and inflammation-related mRNA, pro-inflammatory factors and microglia activation in ACC. Additionally, the impaired neuroplasticity elicited by CRS in the prefrontal cortex (PFC) and ACC were improved by SD. LIMITATIONS: More in-depth studies are required to determine the role of different SD protocols in depressive symptoms and their underlying mechanisms. CONCLUSIONS: Our study revealed the rapid antidepressant effect of SD on CRS mice through the reduction of the neuroinflammatory response in ACC and the improvement of neuroplasticity in PFC and ACC, providing a theoretical basis for the clinical application of SD as a rapid antidepressant treatment.


Asunto(s)
Depresión , Enfermedades Neuroinflamatorias , Ratones , Masculino , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Privación de Sueño/tratamiento farmacológico , Ratones Endogámicos C57BL , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Inflamación/metabolismo , Plasticidad Neuronal , Estrés Psicológico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA