Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
MedComm (2020) ; 5(7): e636, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38962427

RESUMEN

Oral squamous cell carcinoma (OSCC) stands as a predominant and perilous malignant neoplasm globally, with the majority of cases originating from oral potential malignant disorders (OPMDs). Despite this, effective strategies to impede the progression of OPMDs to OSCC remain elusive. In this study, we established mouse models of oral carcinogenesis via 4-nitroquinoline 1-oxide induction, mirroring the sequential transformation from normal oral mucosa to OPMDs, culminating in OSCC development. By intervening during the OPMDs stage, we observed that combining PD1 blockade with photodynamic therapy (PDT) significantly mitigated oral carcinogenesis progression. Single-cell transcriptomic sequencing unveiled microenvironmental dysregulation occurring predominantly from OPMDs to OSCC stages, fostering a tumor-promoting milieu characterized by increased Treg proportion, heightened S100A8 expression, and decreased Fib_Igfbp5 (a specific fibroblast subtype) proportion, among others. Notably, intervening with PD1 blockade and PDT during the OPMDs stage hindered the formation of the tumor-promoting microenvironment, resulting in decreased Treg proportion, reduced S100A8 expression, and increased Fib_Igfbp5 proportion. Moreover, combination therapy elicited a more robust treatment-associated immune response compared with monotherapy. In essence, our findings present a novel strategy for curtailing the progression of oral carcinogenesis.

2.
Mol Biomed ; 5(1): 27, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39009906

RESUMEN

miRNA has emerged as a crucial regulator in various of pathological and physiological processes, yet its precise mechanism of action the detailed mechanism of their action in Head and neck squamous cell carcinoma (HNSCC) remains incompletely understood. This study sheds light on the role of mi-151-5p, revealing its significantly elevated expression in tumor cells, which notably enhances the invasion and migration of HNSCC cells. This effect is achieved through directly targeting LY6/PLAUR Domain Containing 3 (LYPD3) by miR-151-5p, involving complementary binding to the 3'-untranslated regions (3'-UTR) in the mRNA of LYPD3. Consequently, this interaction accelerates the metastasis of HNSCC. Notably, clinical observations indicate a correlation between high expression of miR-151-5p and low levels of LYPD3 in clinical settings are correlated with poor prognosis of HNSCC patients. Furthermore, our investigation demonstrates that glycosylation of LYPD3 modulates its subcellular localization and reinforces its role in suppressing HNSCC metastasis. Additionally, we uncover a potential regulatory mechanism involving the facilitation of miR-151-5p maturation and accumulation through N6-methyladenosine (m6A) modification. This process is orchestrated by methyltransferase-like 3 (METTL3) and mediated by a newly identified reader, heterogeneous nuclear ribonucleoprotein U (hnRNP U). These findings collectively underscore the significance of the METTL3/miR-151-5p/LYPD3 axis serves as a prominent driver in the malignant progression of HNSCC.


Asunto(s)
Adenosina , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello , MicroARNs , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Línea Celular Tumoral , Adenosina/análogos & derivados , Adenosina/metabolismo , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Movimiento Celular/genética , Regiones no Traducidas 3'/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo
3.
Oral Dis ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039738

RESUMEN

OBJECTIVE: Chemoresistance is a common event after chemotherapy, including oral squamous cell carcinoma (OSCC). Accumulated evidence suggests that the cancer stemness significantly contributes to therapy resistance. An unresolved question remains regarding how to effectively overcome OSCC chemoresistance by targeting stemness. This study aims to investigate the antitumor effect of metformin and clarify the potential molecular mechanisms. METHODS: Cellular models resistant to chemotherapy were established, and their viability and sphere-forming ability were assessed using CCK-8 and soft agar formation assays, respectively. RNA-seq and Western blotting analyses were employed to delve into the molecular pathways. Furthermore, to corroborate the inhibitory effects of metformin and cisplatin at an animal level, a subcutaneous tumor transplantation model was instituted. RESULTS: Metformin as a monotherapy exhibited inhibition of stemness traits via Krüppel-like factor 4 (KLF4). Metformin and cisplatin can synergically inhibit cell proliferation and induce cell apoptosis. Animal experiments confirmed the inhibitory effect of cisplatin and metformin on tumor in mice. CONCLUSION: Our study proposes a potential therapeutic approach of combining chemotherapy with metformin to overcome chemoresistance in OSCC.

4.
Chemistry ; : e202401762, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888454

RESUMEN

Force-related discoloration materials are highly valuable because of their characteristics of visualization, easy operation, and environment friendliness. Most force-related discoloration materials focus on polymers and depend on bond scission, which leads to insensitivity and unrecoverable. Small-molecule systems based on well-defined molecular structures and simple composition with high sensitivity would exhibit considerable mechanochromic potential. However, to date, researches about force-related discoloration materials based on small molecule solution remain limited and are rarely reported. In this study, we developed a repeatable and instantaneous discoloration small molecule solution system by simple one-pot synthesis method. It exhibited an instantaneous chromic change from yellowish to dark green under shaking and reverting back to yellow within 1 minute after removal of the shaking. Experimental results confirmed that the discoloration mechanism is attributed to the oscillation accelerating the production of unstable ortho-OH phenoxyl radical. The newly developed shaking-induced discoloration small molecule system (SDSMS) promises in field of mechanical force sensing and optical encryption.

5.
Int J Oral Sci ; 16(1): 46, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886342

RESUMEN

Oral squamous cell carcinoma (OSCC) associated pain commonly predicts adverse events among patients. This clinical feature indicates the engagement of nociceptors on sensory neurons during the development of malignancy. However, it is yet to be determined if targeting oncometabolite-associated nociception processes can hinder OSCC progression. In this study, we reported that nociceptive endings infiltrating both clinical samples and mouse tumor xenografts were associated with poorer clinical outcomes and drove tumor progression in vivo, as evidenced by clinical tissue microarray analysis and murine lingual denervation. We observed that the OSCC microenvironment was characteristic of excessive adenosine due to CD73 upregulation which negatively predicted clinical outcomes in the TCGA-HNSC patient cohort. Notably, such adenosine concentrative OSCC niche was associated with the stimulation of adenosine A2A receptor (A2AR) on trigeminal ganglia. Antagonism of trigeminal A2AR with a selective A2AR inhibitor SCH58261 resulted in impeded OSCC growth in vivo. We showed that trigeminal A2AR overstimulation in OSCC xenograft did not entail any changes in the transcription level of CGRP in trigeminal ganglia but significantly triggered the release of CGRP, an effect counteracted by SCH58261. We further demonstrated the pro-tumor effect of CGRP by feeding mice with the clinically approved CGRP receptor antagonist rimegepant which inhibited the activation of ERK and YAP. Finally, we diminished the impact of CGRP on OSCC with istradefylline, a clinically available drug that targets neuronal A2AR. Therefore, we established trigeminal A2AR-mediated CGRP release as a promising druggable circuit in OSCC treatment.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Carcinoma de Células Escamosas , Progresión de la Enfermedad , Neoplasias de la Boca , Receptor de Adenosina A2A , Animales , Humanos , Ratones , Antagonistas del Receptor de Adenosina A2/farmacología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Neoplasias de la Boca/metabolismo , Pirimidinas/farmacología , Receptor de Adenosina A2A/metabolismo , Triazoles , Nervio Trigémino/metabolismo
6.
Photodiagnosis Photodyn Ther ; 48: 104261, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944403

RESUMEN

BACKGROUND: Photodynamic therapy is garnering increasing attention in oral science. Despite its promising potential, further exploration is warranted to delve into the research paradigms and evolving trends within oral science. Therefore, this study aimed to conduct a comprehensive bibliometric analysis of photodynamic therapy in oral science (PDTOS), investigating research landscapes, identifying key contributors, analyzing collaborative networks, pinpointing emerging research directions, and exploring factors influencing high citations. METHODS: Research and review articles in PDTOS were retrieved from the Web of Science Core Collection database up to December 31, 2023. The R package "bibliometrix" and VOSviewer were utilized for visualizing collaboration networks and keyword co-occurrence, alongside trend analysis. Negative binomial regression was used to model factors affecting citation counts. RESULTS: A total of 2784 articles with significant international collaboration (23.14 %) were analyzed. Brazil, China, the USA, Iran, and Italy led in publications, with predominant USA-European collaborations. The University of Sao Paulo in Brazil was the most published institution in the field. Photodiagnosis and Photodynamic Therapy was the core journal in the field and has the highest number of publications. The main research fields included photodynamic therapy, antibacterial and anticancer treatment, management, and peri­implant periodontitis, with a recent focus on peri­implantitis. Factors such as international cooperation, funding, article age, type, author count, and references significantly influenced citations. CONCLUSIONS: This research provided valuable insights into PDTOS trends and knowledge structures. These findings underscored a significant increase in the number of PDTOS publications, urging strengthened international cooperation. Emerging research has focused on peri­implantitis and nano-photosensitizer materials. Authors should consider various citation-related factors in their research endeavors.

7.
J Dent ; 148: 105138, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38906455

RESUMEN

OBJECTIVES: Recent research indicated that fungi might have a role in periodontitis alongside traditional periodontal pathogens. This state-of-the-art narrative review explores current concepts on the involvement of Candida species in periodontitis, and suggests the potential for ecological management of this disease. DATA, SOURCES AND STUDY SELECTION: A literature search was conducted for a narrative review on Web of Science, PubMed, Medline and Scopus about periodontitis associated with Candida species. Published articles, including case reports, case series, observational and interventional clinical trials, and critical appraisals of the literature were retrieved and reviewed. CONCLUSIONS: Several factors predispose individuals to periodontitis associated with Candida species. These include systemic diseases that lead to immunosuppression and oral environment changes such as cigarette smoking. While a consistent significant increase in the detection rate of Candida species in patients with periodontitis has not been universally observed, there is evidence linking Candida species to the severity of periodontitis and their potential to worsen the condition. Candida species may participate in the development of periodontitis in various ways, including cross-kingdom interactions with periodontal pathogens, changes in the local or systemic environment favoring the virulence of Candida species, and interactions between Candida-bacteria and host immunity. CLINICAL SIGNIFICANCE: Mechanical plaque control is the most common treatment for periodontitis, but its effectiveness may be limited, particularly when dealing with systemic risk factors. Understanding the specific role of Candida in periodontitis illuminates innovative approaches for managing the ecological balance in periodontal health.

8.
Photodiagnosis Photodyn Ther ; 48: 104236, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851310

RESUMEN

BACKGROUND: The treatment of oral leukoplakia (OLK) with aminolaevulinic acid photodynamic therapy (ALA-PDT) is widespread. Nonetheless, there is variation in efficacy. Therefore, this study constructed a model for predicting the short-term efficacy and recurrence of OLK after ALA-PDT. METHODS: The short-term efficacy and recurrence of ALA-PDT were calculated by statistical analysis, and the relevant influencing factors were analyzed by Logistic regression and COX regression model. Finally, prediction models for total response (TR) rate, complete response (CR) rate and recurrence in OLK patients after ALA-PDT treatment were established. Features from pathology sections were extracted using deep learning autoencoder and combined with clinical variables to improve prediction performance of the model. RESULTS: The logistic regression analysis showed that the non-homogeneous (OR: 4.911, P: 0.023) OLK and lesions with moderate to severe epithelial dysplasia (OR: 4.288, P: 0.042) had better short-term efficacy. The area under receiver operating characteristic curve (AUC) of CR, TR and recurrence predict models after the ALA-PDT treatment of OLK patients is 0.872, 0.718, and 0.564, respectively. Feature extraction revealed an association between inflammatory cell infiltration in the lamina propria and recurrence after PDT. Combining clinical variables and deep learning improved the performance of recurrence model by more than 30 %. CONCLUSIONS: ALA-PDT has excellent short-term efficacy in the management of OLK but the recurrence rate was high. Prediction model based on clinicopathological characteristics has excellent predictive effect for short-term efficacy but limited effect for recurrence. The use of deep learning and pathology images greatly improves predictive value of the models.

9.
Int J Oral Sci ; 16(1): 48, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38897993

RESUMEN

Oral submucous fibrosis (OSF) is a chronic and inflammatory mucosal disease caused by betel quid chewing, which belongs to oral potentially malignant disorders. Abnormal fibroblast differentiation leading to disordered collagen metabolism is the core process underlying OSF development. The epithelium, which is the first line of defense against the external environment, can convert external signals into pathological signals and participate in the remodeling of the fibrotic microenvironment. However, the specific mechanisms by which the epithelium drives fibroblast differentiation remain unclear. In this study, we found that Arecoline-exposed epithelium communicated with the fibrotic microenvironment by secreting exosomes. MiR-17-5p was encapsulated in epithelial cell-derived exosomes and absorbed by fibroblasts, where it promoted cell secretion, contraction, migration and fibrogenic marker (α-SMA and collagen type I) expression. The underlying molecular mechanism involved miR-17-5p targeting Smad7 and suppressing the degradation of TGF-ß receptor 1 (TGFBR1) through the E3 ubiquitination ligase WWP1, thus facilitating downstream TGF-ß pathway signaling. Treatment of fibroblasts with an inhibitor of miR-17-5p reversed the contraction and migration phenotypes induced by epithelial-derived exosomes. Exosomal miR-17-5p was confirmed to function as a key regulator of the phenotypic transformation of fibroblasts. In conclusion, we demonstrated that Arecoline triggers aberrant epithelium-fibroblast crosstalk and identified that epithelial cell-derived miR-17-5p mediates fibroblast differentiation through the classical TGF-ß fibrotic pathway, which provided a new perspective and strategy for the diagnosis and treatment of OSF.


Asunto(s)
Arecolina , Células Epiteliales , Exosomas , Fibroblastos , MicroARNs , Fibrosis de la Submucosa Bucal , Receptor Tipo I de Factor de Crecimiento Transformador beta , MicroARNs/metabolismo , Fibrosis de la Submucosa Bucal/metabolismo , Fibrosis de la Submucosa Bucal/patología , Humanos , Fibroblastos/metabolismo , Arecolina/farmacología , Células Epiteliales/metabolismo , Exosomas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Proteína smad7/metabolismo , Diferenciación Celular , Transducción de Señal , Movimiento Celular , Ubiquitina-Proteína Ligasas/metabolismo , Areca/efectos adversos
10.
MedComm (2020) ; 5(5): e561, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38721005

RESUMEN

Oral lichen planus (OLP) is a common chronic inflammatory disease of the oral mucosa, the mechanism of its inflammatory progression has not yet been fully elucidated. PA28γ plays a significant role in a variety of immune-related diseases. However, the exact role of PA28γ in the pathogenesis of OLP remains unclear. Here, we demonstrated that PA28γ is overexpressed in epithelial cells and inflammatory cells of OLP tissues but has no significant relationship with OLP subtypes. Functionally, keratinocytes with high PA28γ expression could induce dendritic cell (DC) maturation and promote the T-cell differentiation into Th1 cells in response to the immune response. In addition, we found that a high level of PA28γ expression is associated with high numbers of infiltrating mature DCs and activated T-cells in OLP tissues. Mechanistically, keratinocytes with high PA28γ expression could promote the secretion of C-C motif chemokine (CCL)5, blocking CCL5 or/and its receptor CD44 could inhibit the induction of T-cell differentiation by keratinocytes with high PA28γ expression. In conclusion, we reveal that keratinocytes with high expression of PA28γ in OLP can induce DC maturation and promote T-cell differentiation through the CCL5-CD44 pathway, providing previously unidentified mechanistic insights into the mechanism of inflammatory progression in OLP.

11.
Colloids Surf B Biointerfaces ; 240: 113984, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795588

RESUMEN

Developing the delivery systems with high therapeutic efficacy and low side effects is of great interest and significance for anticancer therapy. Compared to the high cost in synthesizing new chemotherapeutic drugs, exploring the anticancer potentials of existing chemicals is more convenient and efficient. Sodium bicarbonate (BC), a simple inorganic salt, has shown its tumor inhibition capacity via regulating the acidity of tumor microenvironment. However, the effects of intracytoplasmic BC on tumor growth and the potentials of BC to serve as an anticancer agent are still unknown. Herein, we developed a BC-loaded cationic liposome system (BC-CLP) to deliver BC into the cytosol of cancer cells. The in vitro studies showed that the BC-CLP containing 1% BC (w/v) had a size of 112.9 nm and a zeta potential of 19.1 mV, which reduced the viability of the model cancer cells (human oral squamous cell carcinoma HSC-3 cells) to 13.7%. In contrast, the neutral BC-LP caused less than 50% viability reduction. We further found that BC-CLP released BC directly into cytoplasm via membrane fusion pathway rather than endocytosis, leading to the remarkable increase of cytosolic pH, which may contribute to the anticancer effect of BC-CLP. Our findings indicate that BC-CLP is a potential system for high-efficiency cancer therapy without causing drug-related side effects or resistance.


Asunto(s)
Antineoplásicos , Cationes , Supervivencia Celular , Liposomas , Bicarbonato de Sodio , Liposomas/química , Humanos , Bicarbonato de Sodio/química , Bicarbonato de Sodio/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Cationes/química , Supervivencia Celular/efectos de los fármacos , Concentración de Iones de Hidrógeno , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula , Ensayos de Selección de Medicamentos Antitumorales , Citoplasma/metabolismo , Citoplasma/efectos de los fármacos
12.
Cancer Lett ; 594: 216962, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38768680

RESUMEN

PA28γ overexpression is aberrant and accompanied by poor patient prognosis in various cancers, the precise regulatory mechanism of this crucial gene in the tumor microenvironment remains incompletely understood. In this study, using oral squamous cell carcinoma as a model, we demonstrated that PA28γ exhibits high expression in cancer-associated fibroblasts (CAFs), and its expression significantly correlates with the severity of clinical indicators of malignancy. Remarkably, we found that elevated levels of secreted IGF2 from PA28γ+ CAFs can enhance stemness maintenance and promote tumor cell aggressiveness through the activation of the MAPK/AKT pathway in a paracrine manner. Mechanistically, PA28γ upregulates IGF2 expression by stabilizing the E2F3 protein, a transcription factor of IGF2. Further mechanistic insights reveal that HDAC1 predominantly mediates the deacetylation and subsequent ubiquitination and degradation of E2F3. Notably, PA28γ interacts with HDAC1 and accelerates its degradation via a 20S proteasome-dependent pathway. Additionally, PA28γ+ CAFs exert an impact on the tumor immune microenvironment by secreting IGF2. Excitingly, our study suggests that targeting PA28γ+ CAFs or secreted IGF2 could increase the efficacy of PD-L1 therapy. Thus, our findings reveal the pivotal role of PA28γ in cell interactions in the tumor microenvironment and propose novel strategies for augmenting the effectiveness of immune checkpoint blockade in oral squamous cell carcinoma.


Asunto(s)
Fibroblastos Asociados al Cáncer , Factor de Transcripción E2F3 , Histona Desacetilasa 1 , Factor II del Crecimiento Similar a la Insulina , Neoplasias de la Boca , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello , Microambiente Tumoral , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 1/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/genética , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Factor de Transcripción E2F3/metabolismo , Factor de Transcripción E2F3/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Línea Celular Tumoral , Animales , Ratones , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Masculino , Femenino
13.
Biomolecules ; 14(5)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38786003

RESUMEN

Oral squamous cell carcinoma (OSCC) stands as a prevalent subtype of head and neck squamous cell carcinoma, leading to disease recurrence and low survival rates. PPARγ, a ligand-dependent nuclear transcription factor, holds significance in tumor development. However, the role of PPARγ in the development of OSCC has not been fully elucidated. Through transcriptome sequencing analysis, we discovered a notable enrichment of ferroptosis-related molecules upon treatment with PPARγ antagonist. We subsequently confirmed the occurrence of ferroptosis through transmission electron microscopy, iron detection, etc. Notably, ferroptosis inhibitors could not completely rescue the cell death caused by PPARγ inhibitors, and the rescue effect was the greatest when disulfidptosis and ferroptosis inhibitors coexisted. We confirmed that the disulfidptosis phenotype indeed existed. Mechanistically, through qPCR and Western blotting, we observed that the inhibition of PPARγ resulted in the upregulation of heme oxygenase 1 (HMOX1), thereby promoting ferroptosis, while solute carrier family 7 member 11 (SLC7A11) was also upregulated to promote disulfidptosis in OSCC. Finally, a flow cytometry analysis of flight and multiplex immunohistochemical staining was used to characterize the immune status of PPARγ antagonist-treated OSCC tissues in a mouse tongue orthotopic transplantation tumor model, and the results showed that the inhibition of PPARγ led to ferroptosis and disulfidptosis, promoted the aggregation of cDCs and CD8+ T cells, and inhibited the progression of OSCC. Overall, our findings reveal that PPARγ plays a key role in regulating cell death in OSCC and that targeting PPARγ may be a potential therapeutic approach for OSCC.


Asunto(s)
Ferroptosis , PPAR gamma , Ferroptosis/efectos de los fármacos , Animales , PPAR gamma/metabolismo , PPAR gamma/antagonistas & inhibidores , Humanos , Ratones , Línea Celular Tumoral , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos y+/genética , Hemo-Oxigenasa 1/metabolismo , Antineoplásicos/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
14.
Arch Oral Biol ; 164: 106005, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38781743

RESUMEN

OBJECTIVES: This study aims to investigate the effects of type 17 immune response on the proliferation of oral epithelial cells in periodontitis. DESIGN: A time-dependent ligature induced periodontitis mouse model was utilized to explore gingival hyperplasia and the infiltration of interleukin 17A (IL-17A) positive cells. Immunohistochemistry and flow cytometry were employed to determine the localization and expression of IL-17A in the ligature induced periodontitis model. A pre-existing single-cell RNA sequencing dataset, comparing individuals affected by periodontitis with healthy counterparts, was reanalyzed to evaluate IL-17A expression levels. We examined proliferation markers, including proliferating cell nuclear antigen (PCNA), signal transducer and activator of transcription (STAT3), Yes-associated protein (YAP), and c-JUN, in the gingival and tongue epithelium of the periodontitis model. An anti-IL-17A agent was administered daily to observe proliferative changes in the oral mucosa within the periodontitis model. Cell number quantification, immunofluorescence, and western blot analyses were performed to assess the proliferative responses of human normal oral keratinocytes to IL-17A treatment in vitro. RESULTS: The ligature induced periodontitis model exhibited a marked infiltration of IL-17A-positive cells, alongside significant increase in thickness of the gingival and tongue epithelium. IL-17A triggers the proliferation of human normal oral keratinocytes, accompanied by upregulation of PCNA, STAT3, YAP, and c-JUN. The administration of an anti-IL-17A agent attenuated the proliferation in oral mucosa. CONCLUSIONS: These findings indicate that type 17 immune response, in response to periodontitis, facilitates the proliferation of oral epithelial cells, thus highlighting its crucial role in maintaining the oral epithelial barrier.


Asunto(s)
Inmunidad Adaptativa , Proliferación Celular , Células Epiteliales , Interleucina-17 , Periodontitis , Periodontitis/inmunología , Células Epiteliales/citología , Células Epiteliales/inmunología , Proliferación Celular/genética , Animales , Ratones , Modelos Animales de Enfermedad , Interleucina-17/genética , Interleucina-17/inmunología , Transporte de Proteínas/inmunología , Queratinocitos/citología , Queratinocitos/inmunología , Humanos , Línea Celular , Pérdida de Hueso Alveolar/inmunología , Inmunidad Adaptativa/inmunología
15.
BMC Oral Health ; 24(1): 434, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594651

RESUMEN

BACKGROUND: The grading of oral epithelial dysplasia is often time-consuming for oral pathologists and the results are poorly reproducible between observers. In this study, we aimed to establish an objective, accurate and useful detection and grading system for oral epithelial dysplasia in the whole-slides of oral leukoplakia. METHODS: Four convolutional neural networks were compared using the image patches from 56 whole-slide of oral leukoplakia labeled by pathologists as the gold standard. Sequentially, feature detection models were trained, validated and tested with 1,000 image patches using the optimal network. Lastly, a comprehensive system named E-MOD-plus was established by combining feature detection models and a multiclass logistic model. RESULTS: EfficientNet-B0 was selected as the optimal network to build feature detection models. In the internal dataset of whole-slide images, the prediction accuracy of E-MOD-plus was 81.3% (95% confidence interval: 71.4-90.5%) and the area under the receiver operating characteristic curve was 0.793 (95% confidence interval: 0.650 to 0.925); in the external dataset of 229 tissue microarray images, the prediction accuracy was 86.5% (95% confidence interval: 82.4-90.0%) and the area under the receiver operating characteristic curve was 0.669 (95% confidence interval: 0.496 to 0.843). CONCLUSIONS: E-MOD-plus was objective and accurate in the detection of pathological features as well as the grading of oral epithelial dysplasia, and had potential to assist pathologists in clinical practice.


Asunto(s)
Aprendizaje Profundo , Humanos , Leucoplasia Bucal/diagnóstico
16.
BMC Genomics ; 25(1): 402, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658838

RESUMEN

BACKGROUND: In recent years, Single-cell RNA sequencing (scRNA-seq) is increasingly accessible to researchers of many fields. However, interpreting its data demands proficiency in multiple programming languages and bioinformatic skills, which limited researchers, without such expertise, exploring information from scRNA-seq data. Therefore, there is a tremendous need to develop easy-to-use software, covering all the aspects of scRNA-seq data analysis. RESULTS: We proposed a clear analysis framework for scRNA-seq data, which emphasized the fundamental and crucial roles of cell identity annotation, abstracting the analysis process into three stages: upstream analysis, cell annotation and downstream analysis. The framework can equip researchers with a comprehensive understanding of the analysis procedure and facilitate effective data interpretation. Leveraging the developed framework, we engineered Shaoxia, an analysis platform designed to democratize scRNA-seq analysis by accelerating processing through high-performance computing capabilities and offering a user-friendly interface accessible even to wet-lab researchers without programming expertise. CONCLUSION: Shaoxia stands as a powerful and user-friendly open-source software for automated scRNA-seq analysis, offering comprehensive functionality for streamlined functional genomics studies. Shaoxia is freely accessible at http://www.shaoxia.cloud , and its source code is publicly available at https://github.com/WiedenWei/shaoxia .


Asunto(s)
Análisis de Secuencia de ARN , Análisis de la Célula Individual , Programas Informáticos , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos , Internet , Humanos , Biología Computacional/métodos , RNA-Seq/métodos , Interfaz Usuario-Computador
17.
Br J Cancer ; 130(11): 1744-1757, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582810

RESUMEN

BACKGROUND: Mitochondrial dynamics play a fundamental role in determining stem cell fate. However, the underlying mechanisms of mitochondrial dynamics in the stemness acquisition of cancer cells are incompletely understood. METHODS: Metabolomic profiling of cells were analyzed by MS/MS. The genomic distribution of H3K27me3 was measured by CUT&Tag. Oral squamous cell carcinoma (OSCC) cells depended on glucose or glutamine fueling TCA cycle were monitored by 13C-isotope tracing. Organoids and tumors from patients and mice were treated with DRP1 inhibitors mdivi-1, ferroptosis inducer erastin, or combination with mdivi-1 and erastin to evaluate treatment effects. RESULTS: Mitochondria of OSCC stem cells own fragment mitochondrial network and DRP1 is required for maintenance of their globular morphology. Imbalanced mitochondrial dynamics induced by DRP1 knockdown suppressed stemness of OSCC cells. Elongated mitochondria increased α-ketoglutarate levels and enhanced glutaminolysis to fuel the TCA cycle by increasing glutamine transporter ASCT2 expression. α-KG promoted the demethylation of histone H3K27me3, resulting in downregulation of SNAI2 associated with stemness and EMT. Significantly, suppressing DRP1 enhanced the anticancer effects of ferroptosis. CONCLUSION: Our study reveals a novel mechanism underlying mitochondrial dynamics mediated cancer stemness acquisition and highlights the therapeutic potential of mitochondria elongation to increase the susceptibility of cancer cells to ferroptosis.


Asunto(s)
Carcinoma de Células Escamosas , Dinaminas , Ferroptosis , Glutamina , Mitocondrias , Dinámicas Mitocondriales , Neoplasias de la Boca , Células Madre Neoplásicas , Ferroptosis/efectos de los fármacos , Humanos , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/tratamiento farmacológico , Animales , Dinaminas/antagonistas & inhibidores , Dinaminas/genética , Dinaminas/metabolismo , Ratones , Glutamina/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de los fármacos , Línea Celular Tumoral , Dinámicas Mitocondriales/efectos de los fármacos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Ciclo del Ácido Cítrico/efectos de los fármacos , Sistema de Transporte de Aminoácidos ASC/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Sistema de Transporte de Aminoácidos ASC/antagonistas & inhibidores , Ácidos Cetoglutáricos/metabolismo , Quinazolinonas/farmacología , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Piperazinas/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico
19.
Heliyon ; 10(7): e28280, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560173

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) ravaged the world, and Coronavirus Disease 2019 (COVID-19) exhibited highly prevalent oral symptoms that had significantly impacted the lives of affected patients. However, the involvement of four human coronavirus (HCoVs), namely SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-229E, in oral cavity infections remained poorly understood. We integrated single-cell RNA sequencing (scRNA-seq) data of seven human oral tissues through consistent normalization procedure, including minor salivary gland (MSG), parotid gland (PG), tongue, gingiva, buccal, periodontium and pulp. The Seurat, scDblFinder, Harmony, SingleR, Ucell and scCancer packages were comprehensively used for analysis. We identified specific cell clusters and generated expression profiles of SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) in seven oral regions, providing direction for predicting the tropism of four HCoVs for oral tissues, as well as for dental clinical treatment. Based on our analysis, it appears that various SCARFs, including ACE2, ASGR1, KREMEN1, DPP4, ANPEP, CD209, CLEC4G/M, TMPRSS family proteins (including TMPRSS2, TMPRSS4, and TMPRSS11A), and FURIN, are expressed at low levels in the oral cavity. Conversely, BSG, CTSB, and CTSL exhibit enrichment in oral tissues. Our study also demonstrates widespread expression of restriction factors, particularly IFITM1-3 and LY6E, in oral cells. Additionally, some replication, assembly, and trafficking factors appear to exhibit broad oral tissues expression patterns. Overall, the oral cavity could potentially serve as a high-risk site for SARS-CoV-2 infection, while displaying a comparatively lower degree of susceptibility towards other HCoVs (including SARS-CoV, MERS-CoV and HCoV-229E). Specifically, MSG, tongue, and gingiva represent potential sites of vulnerability for four HCoVs infection, with the MSG exhibiting a particularly high susceptibility. However, the expression patterns of SCARFs in other oral sites demonstrate relatively intricate and may only be specifically associated with SARS-CoV-2 infection. Our study sheds light on the mechanisms of HCoVs infection in the oral cavity as well as gains insight into the characteristics and distribution of possible HCoVs target cells in oral tissues, providing potential therapeutic targets for HCoVs infection in the oral cavity.

20.
Oral Dis ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501334

RESUMEN

OBJECTIVE: Peri-implantitis is one of the most common complications of implants. However, its pathogenesis has not been clarified. In recent years, mouse models are gradually being used in the study of peri-implantitis. This review aims to summarize the methods used to induce peri-implantitis in mice and their current applications. METHOD: Articles of peri-implantitis mouse models were collected. We analyzed the various methods of inducing peri-implantitis and their application in different areas. RESULTS: Most researchers have induced peri-implantitis by silk ligatures. Some others have induced peri-implantitis by Pg gavage and LPS injection. Current applications of peri-implantitis mouse models are in the following areas: investigation of pathogenesis and exploration of new interventions, comparison of peri-implantitis with periodontitis, the interaction between systemic diseases and peri-implantitis, etc. CONCLUSION: Silk ligature for 2-4 weeks, Pg gavage for 6 weeks, and LPS injection for 6 weeks all successfully induced peri-implantitis in mice. Mice have the advantages of mature gene editing technology, low cost, and short time to induce peri-implantitis. It has applications in the study of pathogenesis, non-surgical treatments, and interactions with other diseases. However, compared with large animals, mice also have a number of disadvantages that limit their application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA