Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.170
Filtrar
1.
Food Chem X ; 22: 101423, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38764782

RESUMEN

Colored potatoes have many health benefits because they are rich in anthocyanins. However, the constituent and property of anthocyanins in colored potatoes have not been systematically studied yet. Herein, metabolomic analysis was carried out to investigate the chemical composition of anthocyanins in the four different colored potatoes. After that, the extract and purification conditions, and the stability of the anthocyanins were further studied. The results indicated that the four colored potatoes contained abundant of polyphenols, flavonoids, and anthocyanins. Cyanidin, delphinidin, and malvidin were identified as the major anthocyanidins in purple potatoes, whereas red potatoes were mainly consisted of pelargonidin and its derivatives. 84.47 mg C3GE/100 g DW of anthocyanins was obtained at the optimal conditions, which could be effectively purified macroporous resin of D101. Moreover, the anthocyanins were sensitive to pH, temperature, light, redox agents, and divalent or trivalent metal ions, but stable to sugars and univalent metal ions.

2.
Ergonomics ; : 1-19, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781044

RESUMEN

Technological breakthroughs such as artificial intelligence and sensors make human-robot collaboration a reality. Robots with highly reliable, specialised skills gain informal status in collaborative teams, but factors such as unstructured work environments and task requirements make robot error inevitable. So how do status differences of errant robots affect the desire for contact, and do team characteristics also have an impact? This paper describes an intergroup experiment using the Experimental Vignette Method (EVM), based on the Expectation Violation Theory, 214 subjects were invited to test the following hypotheses: (1) Errant robot status has an influence on employees' desire for contact and support for robotics research through negative emotions; (2) Team interdependence is a boundary condition for the effect of errant robot status on negative emotions. This paper contributes to the literature on employee reactions to robot errors in human-robot collaboration and provides suggestions for robot status design.


Complex human-robot collaboration inevitably leads to the phenomenon of robot errors. Based on this, we used an Experimental Vignette Method and found that differences in robot status design and human-robot team design features significantly affect employees' cognitive psychology after robot errors and reduce the negative consequences.

3.
Anal Chim Acta ; 1308: 342659, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38740459

RESUMEN

BACKGROUND: Kanamycin is an antibiotic that can easily cause adverse side effects if used improperly. Due to the extremely low concentrations of kanamycin in food, quantitative detection of kanamycin becomes a challenge. As one of the DNA self-assembly strategies, entropy-driven strand displacement reaction (EDSDR) does not require enzymes or hairpins to participate in the reaction, which greatly reduces the instability of detection results. Therefore, it is a very beneficial attempt to construct a highly sensitive and specific fluorescence detection method based on EDSDR that can detect kanamycin easily and quickly while ensuring that the results are effective and stable. RESULTS: We created an enzyme-free fluorescent aptamer sensor with high specificity and sensitivity for detecting kanamycin in milk by taking advantage of EDSDR and the high specific binding between the target and its aptamer. The specific binding can result in the release of the promoter chain, which then sets off the pre-planned EDSDR cycle. Fluorescent label modification on DNA combined with the fluorescence quenching-recovery mechanism gives the sensor impressive fluorescence response capabilities. The research results showed that within the concentration range of 0.1 nM-50 nM, there was a good relationship between the fluorescence intensity of the solution and the concentration of kanamycin. Specificity experiments and actual sample detection experiments confirmed that the biosensor could achieve highly sensitive and specific detection of trace amounts of kanamycin in food, with a detection limit of 0.053 nM (S/N = 3). SIGNIFICANCE: To our knowledge, this is the first strategy to combine EDSDR with fluorescence to detect kanamycin in food. Accurate results can be obtained in as little as 90 min with no enzymes or hairpins involved in the reaction. Furthermore, our enzyme-free biosensing method is straightforward, highly sensitive, and extremely specific. It has many possible applications, including monitoring antibiotic residues and food safety.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Entropía , Colorantes Fluorescentes , Kanamicina , Leche , Kanamicina/análisis , Kanamicina/química , Aptámeros de Nucleótidos/química , Leche/química , Colorantes Fluorescentes/química , Técnicas Biosensibles/métodos , Espectrometría de Fluorescencia , Límite de Detección , Animales , Antibacterianos/análisis , Antibacterianos/química , Contaminación de Alimentos/análisis
4.
ACS Appl Mater Interfaces ; 16(20): 26234-26244, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38711193

RESUMEN

The huge volume expansion/contraction of silicon (Si) during the lithium (Li) insertion/extraction process, which can lead to cracking and pulverization, poses a substantial impediment to its practical implementation in lithium-ion batteries (LIBs). The development of low-strain Si-based composite materials is imperative to address the challenges associated with Si anodes. In this study, we have engineered a TiSi2 interface on the surface of Si particles via a high-temperature calcination process, followed by the introduction of an outermost carbon (C) shell, leading to the construction of a low-strain and highly stable Si@TiSi2@NC composite. The robust TiSi2 interface not only enhances electrical and ionic transport but also, more critically, significantly mitigates particle cracking by restraining the stress/strain induced by volumetric variations, thus alleviating pulverization during the lithiation/delithiation process. As a result, the as-fabricated Si@TiSi2@NC electrode exhibits a high initial reversible capacity (2172.7 mAh g-1 at 0.2 A g-1), superior rate performance (1198.4 mAh g-1 at 2.0 A g-1), and excellent long-term cycling stability (847.0 mAh g-1 after 1000 cycles at 2.0 A g-1). Upon pairing with LiNi0.6Co0.2Mn0.2O2 (NCM622), the assembled Si@TiSi2@NC||NCM622 pouch-type full cell exhibits exceptional cycling stability, retaining 90.1% of its capacity after 160 cycles at 0.5 C.

5.
Bioorg Chem ; 147: 107405, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38696843

RESUMEN

The prolonged intravitreal administration of anti-vascular endothelial growth factor (VEGF) drugs is prone to inducing aberrant retinal vascular development and causing damage to retinal neurons. Hence, we have taken an alternative approach by designing and synthesizing a series of cyclic peptides targeting CC motif chemokine receptor 3 (CCR3). Based on the binding mode of the N-terminal region in CCR3 protein to CCL11, we used computer-aided identification of key amino acid sequence, conformational restriction through different cyclization methods, designed and synthesized a series of target cyclic peptides, and screened the preferred compound IB-2 through affinity. IB-2 exhibits excellent anti-angiogenic activity in HRECs. The apoptosis level of 661W cells demonstrated a significant decrease with the escalating concentration of IB-2. This suggests that IB-2 may have a protective effect on photoreceptor cells. In vivo experiments have shown that IB-2 significantly reduces retinal vascular leakage and choroidal neovascularization (CNV) area in a laser-induced mouse model of CNV. These findings indicate the potential of IB-2 as a safe and effective therapeutic agent for AMD, warranting further development.


Asunto(s)
Degeneración Macular , Péptidos Cíclicos , Receptores CCR3 , Animales , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/patología , Ratones , Receptores CCR3/antagonistas & inhibidores , Receptores CCR3/metabolismo , Humanos , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/síntesis química , Inhibidores de la Angiogénesis/química , Estructura Molecular , Relación Estructura-Actividad , Ratones Endogámicos C57BL , Relación Dosis-Respuesta a Droga , Apoptosis/efectos de los fármacos , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/patología , Neovascularización Coroidal/metabolismo , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/patología , Angiogénesis
6.
Inorg Chem ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757704

RESUMEN

High-performance nonlinear-optical (NLO) crystals need to simultaneously meet multiple basic and conflicting performance requirements. Here, by using a partial chemical substitution strategy, the first noncentrosymmetric (NCS) PbBeB2O5 crystal with a BeB2O8 group was synthesized, exhibiting a two-dimensional [BeB2O5]∞ layer constructed by interconnecting BeB2O8 groups and bridged PbO4 with an active lone pair. The crystal shows a promising UV NLO functional feature, including a strong SHG effect of 3.5 × KDP (KH2PO4), large birefringence realizing phase matchability in the whole transparency region from 246 to 2500 nm, a short UV absorption edge of 246 nm, and single-crystal easy growth. Remarkably, theoretical studies reveal that the BeB2O8 group has high nonlinear activity, which could stimulate the discovery of a series of excellent NLO beryllium borates.

7.
Aging Cell ; : e14198, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739369

RESUMEN

The relationship between sarcopenia and the long-term risk of atrial fibrillation (AF) remains unclear. This study recruited a large prospective Caucasian cohort from the UK Biobank. Participants were assessed at baseline with handgrip strength and muscle mass and were categorized into groups of non-sarcopenia, probable sarcopenia, and confirmed sarcopenia. Kaplan-Meier method and Cox proportional hazards model were used to explore the association between sarcopenia and the incidence of AF. The genetic predisposition of AF was assessed by polygenic risk score. Sensitivity analyses were performed to validate the results. A total of 384,433 participants with a median age of 58 years and 54.3% women were enrolled in this study. There were 24,007 cases of new-onset AF over a median follow-up of 12.56 years. The groups of non-sarcopenia, probable sarcopenia, and confirmed sarcopenia accounted for 22,290 (6.1%), 1665 (9.2%), and 52 (11.9%) cases, respectively. Compared with the non-sarcopenia group, participants with probable sarcopenia or confirmed sarcopenia had an 8% (95% CI, 1.03-1.14) or 61% (95% CI, 1.23-2.12) higher risk of AF incidence. The findings remained robust in multiple sensitivity analyses, such as subgroup analysis and further adjustment of genetic predisposition. Notably, the association between sarcopenia and a high AF risk was more pronounced in younger participants, women, and those with valvular heart disease. In conclusion, sarcopenia was associated with a high long-term risk of AF in Caucasians, supporting sarcopenia as a new independent risk factor of AF.

8.
Front Cardiovasc Med ; 11: 1297218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694566

RESUMEN

Introduction: To investigate the prognostic value of the consistency between the residual quantitative flow ratio (QFR) and postpercutaneous coronary intervention (PCI) QFR in patients undergoing revascularization. Methods: This was a single-center, retrospective, observational study. All enrolled patients were divided into five groups according to the ΔQFR (defined as the value of the post-PCI QFR minus the residual QFR): (1) Overanticipated group; (2) Slightly overanticipated group; (3) Consistent group; (4) Slightly underanticipated group; and (5) Underanticipated group. The primary outcome was the 5-year target vessel failure (TVF). Results: A total of 1373 patients were included in the final analysis. The pre-PCI QFR and post-PCI QFR were significantly different among the five groups. TVF within 5 years occurred in 189 patients in all the groups. The incidence of TVF was significantly greater in the underanticipated group than in the consistent group (P = 0.008), whereas no significant differences were found when comparing the underanticipated group with the other three groups. Restricted cubic spline regression analysis showed that the risk of TVF was nonlinearly related to the ΔQFR. A multivariate Cox regression model revealed that a ΔQFR≤ -0.1 was an independent risk factor for TVF. Conclusions: The consistency between the residual QFR and post-PCI QFR may be associated with the long-term prognosis of patients. Patients whose post-PCI QFR is significantly lower than the residual QFR may be at greater risk of TVF. An aggressive PCI strategy for lesions is anticipated to have less functional benefit and may not result in a better clinical outcome.

9.
Heliyon ; 10(7): e28336, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560171

RESUMEN

Background: Increasing evidence suggest a racial bias in pulse oximetry measurement, but this was under investigated in Asian pediatric populations. Methods: Via the Pediatric Intensive Care database, this retrospective study included pediatric patient records of arterial oxygen saturation (SaO2) and oxygen saturation on pulse oximetry (SpO2) measured within 10 min. Discrepancy was examined, and potential predictors of occult hypoxemia (defined as SaO2 <88% with the paired SpO2 ≥92%) as well as its association with outcomes were explored by logistic regression. Results: A total of 390 patients were included with 454 pairs of SaO2-SpO2 readings. The study population consisted of Han Chinese (99.0%) and 43.6% were female. Occult hypoxemia was observed in 20.0% of the patients, with a mean SaO2 of 71.4 ± 15.8%. Potential predictors of occult hypoxemia included female, being first admitted to cardiac ICU, congenital heart disease, increased heart rate, while patients with prior surgery records were less likely to experience occult hypoxemia. Patients with occult hypoxemia had numerically higher in-ICU mortality (16.7% versus 10.9%) and in-hospital mortality (17.9% versus 10.9%), but the associations were not statistically significant. Conclusions: There was a substantial proportion of hypoxemia that was not detected by pulse oximetry in the Chinese pediatric patients, which might be predicted by several characteristics and seemed to associate with mortality.

10.
Food Technol Biotechnol ; 62(1): 4-14, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38601963

RESUMEN

Research background: Peanut allergy poses a significant threat to human health due to the increased risk of long-term morbidity at low doses. Modifying protein structure to affect sensitization is a popular topic. Experimental approach: In this study, the purified peanut allergen Ara h 1 was enzymatically hydrolysed using Flavourzyme, alkaline protease or a combination of both. The binding ability of Ara h 1 to antibodies, gene expression and secretion levels of the proinflammatory factors interleukin-5 and interleukin-6 in Caco-2 cells was measured. Changes in the secondary and tertiary structures before and after treatment with Ara h 1 were analysed by circular dichroism and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Results and conclusions: The results indicated a decrease of the allergenicity and proinflammatory ability of Ara h 1. The evaluation showed that the Flavourzyme and alkaline protease treatments caused particle shortening and aggregation. The fluorescence emission peak increased by 3.4-fold after the combined treatment with both proteases. Additionally, the secondary structure underwent changes and the hydrophobicity also increased 8.95-fold after the combined treatment. Novelty and scientific contribution: These findings partially uncover the mechanism of peanut sensitization and provide an effective theoretical basis for the development of a new method of peanut desensitization.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38573012

RESUMEN

Physical or chemical stress is commonly known to inhibit protein translation at the cellular level. Since the process of protein translation requires catalysis by a multi-component machinery containing eukaryotic initiation factors (eIFs) and ribosomes in a sequence of reactions, how the process fails to proceed and whether certain genes can escape such blockade have provoked research efforts. Lines of evidence have demonstrated that phosphorylation of eIF4E or dephosphorylation of 4E-binding proteins (4E-BPs) prevents the formation of the eukaryotic translation initiation factor 4F (eIF4F) complex, whereas phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) due to activation of heme-regulated inhibitor (HRI), general control nonderepressible 2 (GCN2), protein kinase RNA-like endoplasmic reticulum kinase (PERK), or protein kinase R (PKR) by a diverse array of stressors prevents eIF2-GTP-tRNAiMet ternary complex assembly. These signal the abandonment of translation initiation via 5'-7-methylguanine (m7G) cap recognition by eIF4E. Stress can promote cleavage of tRNAs, impediment of rRNA processing, changes in the epitranscriptomic landscape, ribosome stalling or collision, activation of ribosomal surveillance systems, and assembly of the stress granules. Although these events contribute to the general inhibition of protein translation, a few proteins can bypass such negativity and become translated selectively. Such selective protein translation is primarily m7G cap independent through the integrated stress response or Internal Ribosomal Entry Site (IRES). The newly synthesized proteins often influence cell fate, facilitate cell survival, and build endogenous defense. Insights into the general inhibition of protein translation and selective translation of specific proteins will advance our understanding of the etiology or progression of human diseases involving cellular stress from viral infection or inflammation to myocardial infarction, stroke, or neurodegenerative disease.

12.
Foods ; 13(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38611380

RESUMEN

Listeria monocytogenes is recognized as one of the primary pathogens responsible for foodborne illnesses. The ability of L. monocytogenes to form biofilms notably increases its resistance to antibiotics such as ampicillin and tetracycline, making it exceedingly difficult to eradicate. Residual bacteria within the processing environment can contaminate food products, thereby posing a significant risk to public health. In this study, we used crystal violet staining to assess the biofilm-forming capacity of seven L. monocytogenes strains and identified ATCC 19112 as the strain with the most potent biofilm-forming. Subsequent fluorescence microscopy observations revealed that the biofilm-forming capacity was markedly enhanced after two days of culture. Then, we investigated into the factors contributing to biofilm formation and demonstrated that strains with more robust extracellular polymer secretion and self-agglutination capabilities exhibited a more pronounced ability to form biofilms. No significant correlation was found between surface hydrophobicity and biofilm formation capability. In addition, we found that after biofilm formation, the adhesion and invasion of cells were enhanced and drug resistance increased. Therefore, we hypothesized that the formation of biofilm makes L. monocytogenes more virulent and more difficult to remove by antibiotics. Lastly, utilizing RT-PCR, we detected the expression levels of genes associated with biofilm formation, including those involved in quorum sensing (QS), flagellar synthesis, and extracellular polymer production. These genes were significantly upregulated after biofilm formation. These findings underscore the critical relationship between extracellular polymers, self-agglutination abilities, and biofilm formation. In conclusion, the establishment of biofilms not only enhances L. monocytogenes' capacity for cell invasion and adhesion but also significantly increases its resistance to drugs, presenting a substantial threat to food safety.

13.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(4): 412-421, 2024 Apr 15.
Artículo en Chino | MEDLINE | ID: mdl-38632059

RESUMEN

Objective: To compare the effectiveness of three surgical methods in the treatment of Pauwels type Ⅲ femoral neck fracture in young and middle-aged patients, in order to provide reference for clinical selection of appropriate surgical methods. Methods: The clinical data of 103 patients with Pauwels type Ⅲ femoral neck fracture who met the selection criteria between June 2018 and December 2021 were retrospectively analyzed. The fractures were fixed with hollow screws in an inverted triangular shape (37 cases, hollow screw group), hollow screws in an inverted triangular shape combined with eccentric shaft screw (34 cases, eccentric shaft screw group), and hollow screws in an inverted triangular shape combined with medial support plate (32 cases, support plate group). There was no significant difference in age, gender, cause of injury, body mass index, time from injury to operation, side of the fracture, and Garden classification, whether they were in traction preoperatively, and other baseline data between groups ( P>0.05). The operation time, intraoperative blood loss, the number of fluoroscopy, the length of hospital stay, early postoperative complication and postoperative weight-bearing time of the three groups were recorded. Harris score was used to evaluate joint function at 6 and 12 months after operation, and the difference between the two time points (change value) was calculated for comparison between groups. X-ray films were reviewed to evaluate the quality of fracture reduction (Garden index) and healing, as well as the occurrence of internal fixation failure and femoral head necrosis. Results: The patients of the three groups were successfully completed. Compared with the hollow screw group and the eccentric shaft screw group, the operation time and intraoperative blood loss of the support plate group significantly increased, the number of fluoroscopy reduced, and the quality of fracture reduction was better, the differences were significant ( P<0.05). The operation time, intraoperative blood loss, and the number of fluoroscopy of the hollow screw group were less than those of the eccentric shaft screw group, the differences were significant ( P<0.05). There was no significant difference in the length of hospital stay between groups ( P>0.05). All patients in the three groups were followed up 21-52 months, with an average follow-up time of 36.0 months, and there was no significant difference between groups ( P>0.05). The incisions of all patients healed by first intention. Imaging reexamination showed that there was no significant difference in the incidence of fracture nonunion between groups ( P>0.05). The fracture healing, partial weight-bearing, and full weight-bearing were significantly earlier in the eccentric shaft screw group and the support plate group than in the hollow screw group ( P<0.05). There was no significant difference in change value of Harris score, the incidence of postoperative deep venous thrombosis and femoral head necrosis between groups ( P>0.05); however, the incidence of internal fixation failure in the support plate group and the eccentric shaft screw group was significantly lower than that in the hollow screw group ( P<0.05). The incidence of postoperative lateral thigh irritation in the support plate group was significantly lower than that in the hollow screw group ( P<0.05); there was no significant difference between the eccentric shaft screw group and the other two groups ( P>0.05). The overall incidences of postoperative complications in the eccentric shaft screw group and the support plate group were significantly lower than that in the hollow screw group ( P<0.05). Conclusion: For young and middle-aged patients with Pauwels type Ⅲ femoral neck fracture, compared with simple hollow screw fixation in an inverted triangular shape, combined with medial support plate or eccentric shaft screw internal fixation can shorten the fracture healing time, reduce the incidences of postoperative complication, more conducive to early functional exercise of the affected limb; at the same time, the operation time and blood loss of combined eccentric shaft screw internal fixation are less than those of combined medial support plate internal fixation, so the hollow screw in an inverted triangular shape combined with eccentric shaft screw fixation may be a better choice.


Asunto(s)
Fracturas del Cuello Femoral , Necrosis de la Cabeza Femoral , Persona de Mediana Edad , Humanos , Pérdida de Sangre Quirúrgica , Estudios Retrospectivos , Resultado del Tratamiento , Fracturas del Cuello Femoral/cirugía , Fijación Interna de Fracturas/métodos , Complicaciones Posoperatorias
14.
Biomed Opt Express ; 15(4): 2433-2450, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633075

RESUMEN

In recent years, imaging photoplethysmograph (iPPG) pulse signals have been widely used in the research of non-contact blood pressure (BP) estimation, in which BP estimation based on pulse features is the main research direction. Pulse features are directly related to the shape of pulse signals while iPPG pulse signals are easily disturbed during the extraction process. To mitigate the impact of pulse feature distortion on BP estimation, it is necessary to eliminate interference while retaining valuable shape details in the iPPG pulse signal. Contact photoplethysmograph (cPPG) pulse signals measured at rest can be considered as the undisturbed reference signal. Transforming the iPPG pulse signal to the corresponding cPPG pulse signal is a method to ensure the effectiveness of shape details. However, achieving the required shape accuracy through direct transformation from iPPG to the corresponding cPPG pulse signals is challenging. We propose a method to mitigate this challenge by replacing the reference signal with an average cardiac cycle (ACC) signal, which can approximately represent the shape information of all cardiac cycles in a short time. A neural network using multi-scale convolution and self-attention mechanisms is developed for this transformation. Our method demonstrates a significant improvement in the maximal information coefficient (MIC) between pulse features and BP values, indicating a stronger correlation. Moreover, pulse signals transformed by our method exhibit enhanced performance in BP estimation using different model types. Experiments are conducted on a real-world database with 491 subjects in the hospital, averaging 60 years of age.

15.
Commun Biol ; 7(1): 469, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632414

RESUMEN

Understanding gene expression in different cell types within their spatial context is a key goal in genomics research. SPADE (SPAtial DEconvolution), our proposed method, addresses this by integrating spatial patterns into the analysis of cell type composition. This approach uses a combination of single-cell RNA sequencing, spatial transcriptomics, and histological data to accurately estimate the proportions of cell types in various locations. Our analyses of synthetic data have demonstrated SPADE's capability to discern cell type-specific spatial patterns effectively. When applied to real-life datasets, SPADE provides insights into cellular dynamics and the composition of tumor tissues. This enhances our comprehension of complex biological systems and aids in exploring cellular diversity. SPADE represents a significant advancement in deciphering spatial gene expression patterns, offering a powerful tool for the detailed investigation of cell types in spatial transcriptomics.


Asunto(s)
Perfilación de la Expresión Génica , Genómica
16.
J Nutr ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38614238

RESUMEN

BACKGROUND: Obesity paradox has been reported in patients with cardiovascular disease, showing an inverse association between obesity as defined by BMI (in kg/m2) and prognosis. Nutritional status is associated with systemic inflammatory response and affects cardiovascular disease outcomes. OBJECTIVES: This study sought to examine the influence of obesity and malnutrition on the prognosis of patients with acute coronary syndrome (ACS). METHODS: This study included consecutive patients diagnosed with ACS and underwent coronary angiogram between January 2009 and February 2023. At baseline, patients were categorized according to their BMI as follows: underweight (<18), normal weight (18-24.9), overweight (25.0-29.9), and obese (>30.0). We assessed the nutritional status by Prognostic Nutritional Index (PNI). Malnutrition was defined as a PNI value of <38. RESULTS: Of the 21,651 patients with ACS, 582 (2.7%) deaths from any cause were observed over 28.7 months. Compared with the patient's state of normal weight, overweight, and obesity were associated with decreased risk of all-cause mortality. Malnutrition was independently associated with poor survival (hazards ratio: 2.64; 95% CI: 2.24, 3.12; P < 0.001). In malnourished patients, overweight and obesity showed a 39% and 72% reduction in the incidence of all-cause mortality, respectively. However, in nourished patients, no significant reduction in the incidence of all-cause mortality was observed (all P > 0.05). CONCLUSIONS: Obesity paradox appears to occur in patients with ACS. Malnutrition may be a significant independent risk factor for prognosis in patients with ACS. The obesity paradox is influenced by the status of malnutrition.

17.
Thromb Haemost ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38608711

RESUMEN

BACKGROUND: The Life's Essential 8 (LE8) score, recently proposed by the American Heart Association, represents a new paradigm for evaluating cardiovascular health (CVH). We aimed to explore the association between CVH, estimated using LE8, and venous thromboembolism (VTE) incidence. METHODS: A total of 275,149 participants were recruited from the UK Biobank and divided into high (LE8 score ≥ 80), moderate (LE8 score < 80 but ≥ 50), and low (LE8 score < 50) CVH groups. Restricted cubic spline analysis, the Kaplan-Meier method, and the Cox proportional hazards model were used to explore the association between CVH and VTE. The genetic predisposition to VTE was assessed with a polygenic risk score. Sensitivity analyses were performed to validate the results. RESULTS: During a median follow-up of 12.56 years, VTE developed in 506 (4.09%), 6,069 (2.78%), and 720 (1.66%) participants with low, moderate, and high CVH levels, respectively. Compared with the low CVH group, participants in the moderate and high CVH groups had a 23% (hazard ratio [HR]: 0.77; 95% confidence interval [CI]: 0.71-0.85) and 41% (HR: 0.59; 95% CI: 0.52-0.66) lower risk of VTE, respectively, after adjusting for demographic characteristics, medical history, socioeconomic status, and genetic predisposition. This association remained robust in multiple sensitivity analyses. Higher CVH levels led to a more pronounced reduction in the risk of VTE in females and could appreciably offset the genetic risk of VTE. CONCLUSION: Higher CVH levels were significantly associated with a lower incidence of VTE, encouraging efforts to increase LE8 scores in individuals.

18.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617249

RESUMEN

DNA methylation, as exemplified by cytosine-C5 methylation in mammals and adenine-N6 methylation in bacteria, is a crucial epigenetic mechanism driving numerous vital biological processes. Developing non-nucleoside inhibitors to cause DNA hypomethylation is a high priority, in order to treat a variety of significant medical conditions without the toxicities associated with existing cytidine-based hypomethylating agents. In this study, we have characterized fifteen quinoline-based analogs. Notably, compounds with additions like a methylamine ( 9 ) or methylpiperazine ( 11 ) demonstrate similar low micromolar inhibitory potency against both human DNMT1 (which generates C5-methylcytosine) and Clostridioides difficile CamA (which generates N6-methyladenine). Structurally, compounds 9 and 11 specifically intercalate into CamA-bound DNA via the minor groove, adjacent to the target adenine, leading to a substantial conformational shift that moves the catalytic domain away from the DNA. This study adds to the limited examples of DNA methyltransferases being inhibited by non-nucleotide compounds through DNA intercalation, following the discovery of dicyanopyridine-based inhibitors for DNMT1. Furthermore, our study shows that some of these quinoline-based analogs inhibit other enzymes that act on DNA, such as polymerases and base excision repair glycosylases. Finally, in cancer cells compound 11 elicits DNA damage response via p53 activation. Highlights: Six of fifteen quinoline-based derivatives demonstrated comparable low micromolar inhibitory effects on human cytosine methyltransferase DNMT1, and the bacterial adenine methyltransferases Clostridioides difficile CamA and Caulobacter crescentus CcrM. Compounds 9 and 11 were found to intercalate into a DNA substrate bound by CamA. These quinoline-based derivatives also showed inhibitory activity against various base excision repair DNA glycosylases, and DNA and RNA polymerases. Compound 11 provokes DNA damage response via p53 activation in cancer cells.

19.
Nanoscale ; 16(14): 6876-6899, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38506154

RESUMEN

The use of nanocarriers for drug delivery has opened up exciting new possibilities in cancer treatment. Among them, calcium carbonate (CaCO3) nanocarriers have emerged as a promising platform due to their exceptional biocompatibility, biosafety, cost-effectiveness, wide availability, and pH-responsiveness. These nanocarriers can efficiently encapsulate a variety of small-molecule drugs, proteins, and nucleic acids, as well as co-encapsulate multiple drugs, providing targeted and sustained drug release with minimal side effects. However, the effectiveness of single-drug therapy using CaCO3 nanocarriers is limited by factors such as multidrug resistance, tumor metastasis, and recurrence. Combination therapy, which integrates multiple treatment modalities, offers a promising approach for tackling these challenges by enhancing efficacy, leveraging synergistic effects, optimizing therapy utilization, tailoring treatment approaches, reducing drug resistance, and minimizing side effects. CaCO3 nanocarriers can be employed for combination therapy by integrating drug therapy with photodynamic therapy, photothermal therapy, sonodynamic therapy, immunotherapy, radiation therapy, radiofrequency ablation therapy, and imaging. This review provides an overview of recent advancements in CaCO3 nanocarriers for drug delivery and combination therapy in cancer treatment over the past five years. Furthermore, insightful perspectives on future research directions and development of CaCO3 nanoparticles as nanocarriers in cancer treatment are discussed.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Sistemas de Liberación de Medicamentos/métodos , Fotoquimioterapia/métodos , Neoplasias/tratamiento farmacológico , Terapia Combinada , Nanopartículas/metabolismo
20.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542449

RESUMEN

Listeria monocytogenes (L. monocytogenes) is a food-borne pathogenic bacteria that frequently contaminates animal-derived food and low-temperature preserved food. Listeriosis caused by its infection has a high mortality rate and poses a serious threat to human health. Therefore, it is crucial to establish a sensitive, rapid and easy-to-operate technique. In this study, a Recombinase Aided Amplification (RAA) assisted CRISPR/Cas12a (RAA-CRISPR/Cas12a) fluorescence platform was established for highly sensitive nucleic acid detection of L. monocytogenes. The established RAA-CRISPR/Cas12a showed high sensitivity and high specificity, with the sensitivity of 350 CFU/mL and 5.4 × 10-3 ng/µL for pure bacterial solution and genomic DNA, and good specificity for 5 strains of Listeria spp. and 14 strains of other common pathogenic bacteria. L. monocytogenes could be detected at an initial concentration of 2.3 CFU/25g within 2 h of enriching the beef in the food matrix, and this method could be applied to food samples that were easily contaminated with L. monocytogenes The results of RAA-CRISPR/Cas12a could be observed in 5 min, while the amplification was completed in 20-30 min. The speed and sensitivity of RAA-CRISPR/Cas12a were significantly higher than that of the national standard method. In conclusion, the RAA-CRISPR/Cas12a system established in this study has new application potential in the diagnosis of food-borne pathogens.


Asunto(s)
Listeria monocytogenes , Animales , Bovinos , Humanos , Listeria monocytogenes/genética , Sistemas CRISPR-Cas , Microbiología de Alimentos , Técnicas de Amplificación de Ácido Nucleico/métodos , Recombinasas/genética , ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA