Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant Cell Environ ; 2024 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-39400369

RESUMEN

Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) has decimated kiwifruit orchards growing susceptible kiwifruit Actinidia chinensis varieties. Effector loss has occurred recently in Psa3 isolates from resistant kiwifruit germplasm, resulting in strains capable of partially overcoming resistance present in kiwiberry vines (Actinidia arguta, Actinidia polygama, and Actinidia melanandra). Diploid male A. melanandra recognises several effectors, sharing recognition of at least one avirulence effector (HopAW1a) with previously studied tetraploid kiwiberry vines. Sequencing and assembly of the A. melanandra genome enabled the characterisation of the transcriptomic response of this non-host to wild-type and genetic mutants of Psa3. A. melanandra appears to mount a classic effector-triggered immunity (ETI) response to wildtype Psa3 V-13, as expected. Surprisingly, the type III secretion (T3SS) system-lacking Psa3 V-13 ∆hrcC strain did not appear to trigger pattern-triggered immunity (PTI) despite lacking the ability to deliver immunity-suppressing effectors. Contrasting the A. melanandra responses to an effectorless Psa3 V-13 ∆33E strain and to Psa3 V-13 ∆hrcC suggested that PTI triggered by Psa3 V-13 was based on the recognition of the T3SS itself. The characterisation of both ETI and PTI branches of innate immunity responses within A. melanandra further enables breeding for durable resistance in future kiwifruit cultivars.

2.
Plant Cell Environ ; 47(11): 4101-4115, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38899426

RESUMEN

Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) causes a devastating canker disease in yellow-fleshed kiwifruit (Actinidia chinensis). The effector HopZ5, which is present in all isolates of Psa3 causing global outbreaks of pandemic kiwifruit canker disease, triggers immunity in Nicotiana benthamiana and is not recognised in susceptible A. chinensis cultivars. In a search for N. benthamiana nonhost resistance genes against HopZ5, we found that the nucleotide-binding leucine-rich repeat receptor NbPTR1 recognised HopZ5. RPM1-interacting protein 4 orthologues from N. benthamiana and A. chinensis formed a complex with NbPTR1 and HopZ5 activity was able to disrupt this interaction. No functional orthologues of NbPTR1 were found in A. chinensis. NbPTR1 transformed into Psa3-susceptible A. chinensis var. chinensis 'Hort16A' plants introduced HopZ5-specific resistance against Psa3. Altogether, this study suggested that expressing NbPTR1 in Psa3-susceptible kiwifruit is a viable approach to acquiring resistance to Psa3 and it provides valuable information for engineering resistance in otherwise susceptible kiwifruit genotypes.


Asunto(s)
Actinidia , Resistencia a la Enfermedad , Nicotiana , Enfermedades de las Plantas , Proteínas de Plantas , Pseudomonas syringae , Actinidia/microbiología , Actinidia/genética , Pseudomonas syringae/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Nicotiana/microbiología , Nicotiana/genética , Nicotiana/inmunología , Plantas Modificadas Genéticamente , Frutas/microbiología , Frutas/genética
3.
New Phytol ; 238(4): 1605-1619, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36856342

RESUMEN

Testing effector knockout strains of the Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) for reduced in planta growth in their native kiwifruit host revealed a number of nonredundant effectors that contribute to Psa3 virulence. Conversely, complementation in the weak kiwifruit pathogen P. syringae pv. actinidifoliorum (Pfm) for increased growth identified redundant Psa3 effectors. Psa3 effectors hopAZ1a and HopS2b and the entire exchangeable effector locus (ΔEEL; 10 effectors) were significant contributors to bacterial colonisation of the host and were additive in their effects on virulence. Four of the EEL effectors (HopD1a, AvrB2b, HopAW1a and HopD2a) redundantly contribute to virulence through suppression of pattern-triggered immunity (PTI). Important Psa3 effectors include several redundantly required effectors early in the infection process (HopZ5a, HopH1a, AvrPto1b, AvrRpm1a and HopF1e). These largely target the plant immunity hub, RIN4. This comprehensive effector profiling revealed that Psa3 carries robust effector redundancy for a large portion of its effectors, covering a few functions critical to disease.


Asunto(s)
Actinidia , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Bacterias , Virulencia , Inmunidad de la Planta , Reconocimiento de Inmunidad Innata , Pseudomonas syringae , Proteínas Bacterianas
4.
Front Plant Sci ; 12: 685416, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335654

RESUMEN

Tomato fruit stored below 12°C lose quality and can develop chilling injury upon subsequent transfer to a shelf temperature of 20°C. The more severe symptoms of altered fruit softening, uneven ripening and susceptibility to rots can cause postharvest losses. We compared the effects of exposure to mild (10°C) and severe chilling (4°C) on the fruit quality and transcriptome of 'Angelle', a cherry-type tomato, harvested at the red ripe stage. Storage at 4°C (but not at 10°C) for 27 days plus an additional 6 days at 20°C caused accelerated softening and the development of mealiness, both of which are commonly related to cell wall metabolism. Transcriptome analysis using RNA-Seq identified a range of transcripts encoding enzymes putatively involved in cell wall disassembly whose expression was strongly down-regulated at both 10 and 4°C, suggesting that accelerated softening at 4°C was due to factors unrelated to cell wall disassembly, such as reductions in turgor. In fruit exposed to severe chilling, the reduced transcript abundances of genes related to cell wall modification were predominantly irreversible and only partially restored upon rewarming of the fruit. Within 1 day of exposure to 4°C, large increases occurred in the expression of alternative oxidase, superoxide dismutase and several glutathione S-transferases, enzymes that protect cell contents from oxidative damage. Numerous heat shock proteins and chaperonins also showed large increases in expression, with genes showing peak transcript accumulation after different times of chilling exposure. These changes in transcript abundance were not induced at 10°C, and were reversible upon transfer of the fruit from 4 to 20°C. The data show that genes involved in cell wall modification and cellular protection have differential sensitivity to chilling temperatures, and exhibit different capacities for recovery upon rewarming of the fruit.

5.
Plant Physiol Biochem ; 121: 176-186, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29126060

RESUMEN

The effect of selenium (Se) application on the sulfur (S)-rich glucosinolate (GSL)-containing plant, broccoli (Brassica oleracea L. var. italica) was examined with a view to producing germplasm with increased Se and GSL content for human health, and to understanding the influence of Se on the regulation of GSL production. Two cultivars differing in GSL content were compared. Increased Se application resulted in an increase in Se uptake in planta, but no significant change in total S or total GSL content in either cultivar. Also no significant change was observed in the activity of ATP sulfurylase (ATPS, EC 2.7.7.4) or O-acetylserine(thiol) lyase (OASTL, EC 2.5.1.47) with increased Se application. However, in the first investigation of APS kinase (APSK, EC 2.7.1.25) expression in response to Se fertilisation, an increase in transcript abundance of one variant of APS kinase 1 (BoAPSK1A) was observed in both cultivars, and an increase in BoAPSK2 transcript abundance was observed in the low GSL producing cultivar. A mechanism by which increased APSK transcription may provide a means of controlling the content of S-containing compounds, including GSLs, following Se uptake is proposed.


Asunto(s)
Brassica/metabolismo , Glucosinolatos/biosíntesis , Proteínas de Plantas/metabolismo , Selenio/farmacología , Azufre/metabolismo , Brassica/genética , Proteínas de Plantas/genética
6.
J Agric Food Chem ; 63(7): 1896-905, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25625473

RESUMEN

In Brassica species, hydrolysis of (methylthio)glucosinolates produces sulfur-containing aglycons which have demonstrated anticancer benefits. Selenized Brassicaceae contain (methylseleno)glucosinolates and their selenium-containing aglycons. As a prelude to biological testing, broccoli, cauliflower, and forage rape plants were treated with sodium selenate and their tap roots, stems, leaves, and florets analyzed for selenoglucosinolates and their Se aglycons. Two new selenoglucosinolates were identified: glucoselenoraphanin in broccoli florets and glucoselenonasturtiin in forage rape roots. A new aglycon, selenoberteroin nitrile, was identified in forage rape. The major selenoglucosinolates were glucoselenoerucin in broccoli, glucoselenoiberverin in cauliflower, and glucoselenoerucin and glucoselenoberteroin in forage rape roots. In broccoli florets, the concentrations of selenglucosinolates exceeded those of their sulfur analogues. Fertilization with selenium slightly reduced (methylthio)glucosinolates and aglycons in the roots, but increased them in the florets, the leaves, and sometimes the stems. These discoveries provide a new avenue for investigating how consumption of Brassica vegetables and their organoselenides may promote human health.


Asunto(s)
Brassica/química , Glucosinolatos/análisis , Ácido Selénico/análisis , Brassica/metabolismo , Alimentos Orgánicos/análisis , Glucosinolatos/metabolismo , Humanos , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Ácido Selénico/metabolismo
7.
Mol Nutr Food Res ; 58(12): 2350-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25176606

RESUMEN

SCOPE: Selenium (Se) is a micronutrient essential for human health, including immune function. Previous research indicates that Se supplementation may cause a shift from T helper (Th)1- to Th2-type immune responses. We aim to test the potential health promoting effects of Se-enriched broccoli. METHODS AND RESULTS: In a human trial, 18 participants consumed control broccoli daily for 3 days. After a 3-day wash-out period, the participants were provided with Se-enriched broccoli containing 200 µg of Se per serving for 3 days. Plasma and peripheral blood mononuclear cell (PBMC) samples were collected at the start and end of each broccoli feeding period for analysis of total Se and measurement of cytokine production from PBMC stimulated with antigens ex vivo. Plasma Se content remained consistent throughout the control broccoli feeding period and the baseline of the Se-enriched broccoli period (1.22 µmol/L) and then significantly increased following 3 days of Se-enriched broccoli feeding. Interleukin (IL-2, IL-4, IL-5, IL-13, and IL-22) production from PBMC significantly increased after 3 days of Se-enriched broccoli feeding compared with baseline. CONCLUSION: This study indicates that consumption of Se-enriched broccoli may increase immune responses toward a range of immune challenges.


Asunto(s)
Brassica/química , Leucocitos Mononucleares/efectos de los fármacos , Selenio/administración & dosificación , Adulto , Anciano , Femenino , Cromatografía de Gases y Espectrometría de Masas , Glucosinolatos/orina , Humanos , Interleucina-13/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Interleucinas/metabolismo , Masculino , Persona de Mediana Edad , Selenio/sangre , Selenoproteína P/sangre , Adulto Joven , Interleucina-22
8.
Plant Cell Environ ; 36(1): 176-85, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22734927

RESUMEN

Cold-induced sweetening (CIS) is a serious post-harvest problem for potato tubers, which need to be stored cold to prevent sprouting and pathogenesis in order to maintain supply throughout the year. During storage at cold temperatures (below 10 °C), many cultivars accumulate free reducing sugars derived from a breakdown of starch to sucrose that is ultimately cleaved by acid invertase to produce glucose and fructose. When affected tubers are processed by frying or roasting, these reducing sugars react with free asparagine by the Maillard reaction, resulting in unacceptably dark-coloured and bitter-tasting product and generating the probable carcinogen acrylamide as a by-product. We have previously identified a vacuolar invertase inhibitor (INH2) whose expression correlates both with low acid invertase activity and with resistance to CIS. Here we show that, during cold storage, overexpression of the INH2 vacuolar invertase inhibitor gene in CIS-susceptible potato tubers reduced acid invertase activity, the accumulation of reducing sugars and the generation of acrylamide in subsequent fry tests. Conversely, suppression of vacuolar invertase inhibitor expression in a CIS-resistant line increased susceptibility to CIS. The results show that post-translational regulation of acid invertase by the vacuolar invertase inhibitor is an important component of resistance to CIS.


Asunto(s)
Proteínas de Plantas/metabolismo , Tubérculos de la Planta/enzimología , Procesamiento Proteico-Postraduccional , Solanum tuberosum/enzimología , beta-Fructofuranosidasa/metabolismo , Acrilamida/análisis , Frío , Color , Regulación de la Expresión Génica de las Plantas , Tubérculos de la Planta/química , ARN Mensajero/metabolismo , Solanum tuberosum/química
9.
Phytochemistry ; 75: 140-52, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22197453

RESUMEN

Glucosinolates are sulphur-containing glycosides found in many Brassica spp. that are important because their aglycone hydrolysis products protect the plant from herbivores and exhibit anti-cancer properties in humans. Recently, synthetically produced selenium analogues have been shown to be more effective at suppressing cancers than their sulphur counterparts. Although selenium is incorporated into a number of Brassica amino acids and peptides, firm evidence has yet to be presented for the presence of selenium in the glucosinolates and their aglycones in planta. In this study broccoli and cauliflower florets, and roots of forage rape, all obtained from plants treated with sodium selenate, were analysed for the presence of organoselenides. GC-MS analysis of pentane/ether extracts identified six organoselenium compounds including selenium analogues of known myrosinase-derived Brassica volatiles: 4-(methylseleno)butanenitrile, 5-(methylseleno)pentanenitrile, 3-(methylseleno)propylisothiocyanate, 4-(methylseleno)butylisothiocyanate, and 5-(methylseleno)pentylisothiocyanate. LC-MS analysis of ethanolic extracts identified three selenoglucosinolates: 3-(methylseleno)propylglucosinolate (glucoselenoiberverin), 4-(methylseleno)butylglucosinolate (glucoselenoerucin), and 5-(methylseleno)pentylglucosinolate (glucoselenoberteroin). LC-MS/MS analysis was used to locate the position of the selenium atom in the selenoglucosinolate and indicates preferential incorporation of selenium via selenomethionine into the methylselenyl moiety rather than into the sulphate or ß-thioglucose groups. In forage rape, selenoglucosinolates and their aglycones (mainly isothiocyanates), occurred at concentrations up to 10% and 70%, respectively, of their sulphur analogues. In broccoli, concentrations of the selenoglucosinolates and their aglycones (mainly nitriles) were up to 60% and 1300%, respectively of their sulphur analogues. These findings indicate the potential for the incorporation of high levels of selenium into Brassica glucosinolates.


Asunto(s)
Brassica/química , Glucosinolatos/análisis , Compuestos de Organoselenio/análisis , Compuestos de Selenio/química , Brassica/metabolismo , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Glucosinolatos/metabolismo , Estructura Molecular , Compuestos de Organoselenio/metabolismo , Ácido Selénico
10.
J Exp Bot ; 62(10): 3519-34, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21393382

RESUMEN

Cold storage of tubers of potato (Solanum tuberosum L.) compromises tuber quality in many cultivars by the accumulation of hexose sugars in a process called cold-induced sweetening. This is caused by the breakdown of starch to sucrose, which is cleaved to glucose and fructose by vacuolar acid invertase. During processing of affected tubers, the high temperatures involved in baking and frying cause the Maillard reaction between reducing sugars and free amino acids, resulting in the accumulation of acrylamide. cDNA clones with deduced proteins homologous to known invertase inhibitors were isolated and the two most abundant forms, termed INH1 and INH2, were shown to possess apoplastic and vacuolar localization, respectively. The INH2 gene showed developmentally regulated alternative splicing, so, in addition to the INH2α transcript encoding the full-length protein, two hybrid mRNAs (INH2ß*A and INH2ß*B) that encoded deduced vacuolar invertase inhibitors with divergent C-termini were detected, the result of mRNA splicing of an upstream region of INH2 to a downstream region of INH1. Hybrid RNAs are common in animals, where they may add to the diversity of the proteome, but are rarely described in plants. During cold storage, INH2α and the hybrid INH2ß mRNAs accumulated to higher abundance in cultivars resistant to cold-induced sweetening than in susceptible cultivars. Increased amounts of invertase inhibitor may contribute to the suppression of acid invertase activity and prevent cleavage of sucrose. Evidence for increased RNA splicing activity was detected in several resistant lines, a mechanism that in some circumstances may generate a range of proteins with additional functional capacity to aid adaptability.


Asunto(s)
Frío , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Tubérculos de la Planta/genética , Empalme del ARN/genética , ARN Mensajero/genética , Homología de Secuencia de Aminoácido , Solanum tuberosum/genética , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA