Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Langmuir ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288013

RESUMEN

Obtaining reliable and informative DNA data from soil samples is challenging due to the presence of interfering substances and typically low DNA yields. In this work, we prepared poly(ethylene glycol)-modified magnetic particles (PEG@Fe3O4) for DNA purification. The particles leverage the facilitative effect of calcium ions (Ca2+), which act as bridges between DNA and PEG@Fe3O4 by coordinating with the phosphate groups of DNA and the hydroxyl groups on the particles. The addition of 2-propanol further enhances this Ca2+-mediated DNA adsorption by inducing a conformational change from the B-form to the more compact A-form of DNA. PEG@Fe3O4 demonstrates a DNA adsorption capacity of 144.6 mg g-1. When applied to the extraction of genomic DNA from soil samples, PEG@Fe3O4 outperforms commercial kits and traditional phenol-chloroform extraction methods in terms of DNA yield and purity. Furthermore, we developed a 16-channel automated DNA extraction device to streamline the process and reduce the extraction time. The successful amplification of target bacterial and fungal amplicons underscores the potential of this automated, device-assisted method for studying soil microbial diversity.

2.
Mikrochim Acta ; 191(3): 122, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319462

RESUMEN

A cupric oxide (CuO) nanosheet-based chemical fluorescence sensor was developed to realize the detection of acetone in aqueous solutions. CuO is an oxidase mimic and can catalyze the oxidation of o-phenylenediamine (OPD) to form 2,3-diaminophenazine (oxOPD). Interestingly, acetone was found to possess the scavenging ability for superoxide anions generated in the CuO-catalyzed oxidation system, hence weakening the OPD oxidation and leading to a reduction in the fluorescence intensity of the catalyzing system at 574 nm under excitation at 425 nm. Based on this property of acetone, a fluorescent sensor was constructed to detect acetone. The sensor exhibits a linear range of 1.35 to 2 × 105 µmol L-1 and a detection limit of 1.08 µmol L-1. Additionally, a smartphone-free portable device was constructed to realize on-the-spot and rapid detection of acetone in cauliflower, mineral water, tap water, and lake water samples. The recoveries by the portable device are 93.2 to 108% for actual samples, with relative standard deviations of less than 4.3%, indicating a potential application prospect of the device in on-site detection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA