Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.374
Filtrar
1.
Molecules ; 29(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38731653

RESUMEN

In pursuit of enhancing the mechanical properties, especially the tensile strength, of 4D-printable consumables derived from waste cooking oil (WCO), we initiated the production of acrylate-modified WCO, which encompasses epoxy waste oil methacrylate (EWOMA) and epoxy waste oil acrylate (EWOA). Subsequently, a series of WCO-based 4D-printable photocurable resins were obtained by introducing a suitable diacrylate molecule as the second monomer, coupled with a composite photoinitiator system comprising Irgacure 819 and p-dimethylaminobenzaldehyde (DMAB). These materials were amenable to molding using an LCD light-curing 3D printer. Our findings underscored the pivotal role of triethylene glycol dimethacrylate (TEGDMA) among the array of diacrylate molecules in enhancing the mechanical properties of WCO-based 4D-printable resins. Notably, the 4D-printable material, composed of EWOA and TEGDMA in an equal mass ratio, exhibited nice mechanical strength comparable to that of mainstream petroleum-based 4D-printable materials, boasting a tensile strength of 9.17 MPa and an elongation at break of 15.39%. These figures significantly outperformed the mechanical characteristics of pure EWOA or TEGDMA resins. Furthermore, the EWOA-TEGDMA resin demonstrated impressive thermally induced shape memory performance, enabling deformation and recovery at room temperature and retaining its shape at -60 °C. This resin also demonstrated favorable biodegradability, with an 8.34% weight loss after 45 days of soil degradation. As a result, this 4D-printable photocurable resin derived from WCO holds immense potential for the creation of a wide spectrum of high-performance intelligent devices, brackets, mold, folding structures, and personalized products.

2.
Soc Sci Res ; 120: 103004, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38763539

RESUMEN

This study explores why some fake news publishers are able to propagate misinformation while others receive little attention on social media. Using COVID-19 vaccine tweets as a case study, this study combined the relational niche framework with pooled and multilevel models that address the unobserved heterogeneity. The results showed that, as expected, ties to accounts with more followers were associated with more fake news tweets, retweets, and likes. However, more surprisingly, embedding with fake news publishers had an inverted U-shaped association with diffusion, whereas social proximity to mainstream media was positively associated. Although the effect of influential users is in line with opinion leader theory, the newly-identified effects of social proximity to reliable sources and embeddedness suggest that the key to fake news virality is to earn greater organizational status and modest, not overly, echo chambers. This study highlights the potential of dynamic media networks to shape the misinformation market.

3.
Plant Cell Rep ; 43(6): 146, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764051

RESUMEN

KEY MESSAGE: Compared with NaCl, NaHCO3 caused more serious oxidative damage and photosynthesis inhibition in safflower by down-regulating the expression of related genes. Salt-alkali stress is one of the important factors that limit plant growth. NaCl and sodium bicarbonate (NaHCO3) are neutral and alkaline salts, respectively. This study investigated the physiological characteristics and molecular responses of safflower (Carthamus tinctorius L.) leaves treated with 200 mmol L-1 of NaCl or NaHCO3. The plants treated with NaCl treatment were less effective at inhibiting the growth of safflower, but increased the content of malondialdehyde (MDA) in leaves. Meanwhile, safflower alleviated stress damage by increasing proline (Pro), soluble protein (SP), and soluble sugar (SS). Both fresh weight and dry weight of safflower was severely decreased when it was subjected to NaHCO3 stress, and there was a significant increase in the permeability of cell membranes and the contents of osmotic regulatory substances. An enrichment analysis of the differentially expressed genes (DEGs) using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes identified significant enrichment of photosynthesis and pathways related to oxidative stress. Furthermore, a weighted gene co-expression network analysis (WGCNA) showed that the darkgreen module had the highest correlation with photosynthesis and oxidative stress traits. Large numbers of transcription factors, primarily from the MYB, GRAS, WRKY, and C2H2 families, were predicted from the genes within the darkgreen module. An analysis of physiological indicators and DEGs, it was found that under saline-alkali stress, genes related to chlorophyll synthesis enzymes were downregulated, while those related to degradation were upregulated, resulting in inhibited chlorophyll biosynthesis and decreased chlorophyll content. Additionally, NaCl and NaHCO3 stress downregulated the expression of genes related to the Calvin cycle, photosynthetic antenna proteins, and the activity of photosynthetic reaction centers to varying degrees, hindering the photosynthetic electron transfer process, suppressing photosynthesis, with NaHCO3 stress causing more pronounced adverse effects. In terms of oxidative stress, the level of reactive oxygen species (ROS) did not change significantly under the NaCl treatment, but the contents of hydrogen peroxide and the rate of production of superoxide anions increased significantly under NaHCO3 stress. In addition, treatment with NaCl upregulated the levels of expression of the key genes for superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), the ascorbate-glutathione cycle, and the thioredoxin-peroxiredoxin pathway, and increased the activity of these enzymes, thus, reducing oxidative damage. Similarly, NaHCO3 stress increased the activities of SOD, CAT, and POD and the content of ascorbic acid and initiated the glutathione-S-transferase pathway to remove excess ROS but suppressed the regeneration of glutathione and the activity of peroxiredoxin. Overall, both neutral and alkaline salts inhibited the photosynthetic process of safflower, although alkaline salt caused a higher level of stress than neutral salt. Safflower alleviated the oxidative damage induced by stress by regulating its antioxidant system.


Asunto(s)
Antioxidantes , Carthamus tinctorius , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo , Fotosíntesis , Hojas de la Planta , Bicarbonato de Sodio , Cloruro de Sodio , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Bicarbonato de Sodio/farmacología , Cloruro de Sodio/farmacología , Antioxidantes/metabolismo , Carthamus tinctorius/efectos de los fármacos , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Carthamus tinctorius/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Malondialdehído/metabolismo , Clorofila/metabolismo , Estrés Salino/efectos de los fármacos
4.
Angew Chem Int Ed Engl ; : e202406452, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735843

RESUMEN

Acidic H2O2 synthesis through electrocatalytic 2e- oxygen reduction presents a sustainable alternative to the energy-intensive anthraquinone oxidation technology. Nevertheless, acidic H2O2 electrosynthesis suffers from low H2O2 Faradaic efficiencies primarily due to the competing reactions of 4e- oxygen reduction to H2O and hydrogen evolution in environments with high H+ concentrations. Here, we demonstrate the significant effect of alkali metal cations, acting as competing ions with H+, in promoting acidic H2O2 electrosynthesis at industrial-level currents, resulting in an effective current densities of 50‒421 mA cm‒2 with 84‒100% Faradaic efficiency and a production rate of 856‒7842 µmol cm-2 h-1 that far exceeds the performance observed in pure acidic electrolytes or low-current electrolysis. Finite-element simulations indicate that high interfacial pH near the electrode surface formed at high currents is crucial for activating the promotional effect of K+. In situ attenuated total reflection Fourier transform infrared spectroscopy and ab initio molecular dynamics simulations reveal the central role of alkali metal cations in stabilizing the key *OOH intermediate to suppress 4e- oxygen reduction through interacting with coordinated H2O.

5.
J Biomech ; 169: 112147, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38768542

RESUMEN

This work illustrates the sensitivity of demographically characteristic body segment inertial properties and subject-specific customization on model performance. One characteristic demographic, gender, and one subject-specific characteristic, hip joint center location, were represented with musculoskeletal modeling to evaluate how design decisions may alter model outputs. Generic sexually dimorphic musculoskeletal models were developed from the commonly used Rajagopal model using male and female data adapted by Dumas et al. Hip joint centers of these models were adjusted based on functional joint center testing. The kinematics and dynamics of 40 gait cycles from four subjects are predicted using these models. Two-way analysis of variance (ANOVA) was performed on the continuous time series data using statistical parametric mapping (SPM) to assess changes in kinematics/dynamics due to either choice in model (Rajagopal vs Dumas) or whether joint center adjustment was performed. The SPM based two-way ANOVA of the inverse dynamics found that differences in the Rajagopal and Dumas models resulted in significant differences in sagittal plane moments during swing (0.115 ± 0.032 Nm/kg difference in mean hip flexion moment during initial swing and a 0.077 ± 0.041 Nm/kg difference in mean hip extension moment during terminal swing), and differences between the models with and without hip joint center adjustment resulted in significant differences in hip flexion and abduction moments during stance (0.217 ± 0.055 Nm/kg increased mean hip abductive moment). By comparing the outputs of these differently constructed models with each other, the study finds that dynamic predictions of stance are sensitive to positioning of joint centers, and dynamic predictions of swing are more sensitive to segment mass/inertial properties.

6.
Nat Commun ; 15(1): 4324, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773152

RESUMEN

Constructing nanolaminate membranes made of two-dimensional graphene oxide nanosheets has gained enormous interest in recent decades. However, a key challenge facing current graphene-based membranes is their poor rejection for monovalent salts due to the swelling-induced weak nanoconfinement and the transmembrane co-transport of anions and cations. Herein, we propose a strategy of electrostatic-induced ion-confined partitioning in a reduced graphene oxide membrane for breaking the correlation of anions and cations to suppress anion-cation co-transport, substantially improving the desalination performance. The membrane demonstrates a rejection of 95.5% for NaCl with a water permeance of 48.6 L m-2 h-1 bar-1 in pressure-driven process, and it also exhibits a salt rejection of 99.7% and a water flux of 47.0 L m-2 h-1 under osmosis-driven condition, outperforming the performance of reported graphene-based membranes. The simulation and calculation results unveil that the strong electrostatic attraction of membrane forces the hydrated Na+ to undergo dehydration and be exclusively confined in the nanochannels, strengthening the intra-nanochannel anion/cation partitioning, which refrains from the dynamical anion-cation correlations and thereby prevents anions and cations from co-transporting through the membrane. This study provides guidance for designing advanced desalination membranes and inspires the future development of membrane-based separation technologies.

7.
J Craniofac Surg ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38771188

RESUMEN

The treatment of temporomandibular joint (TMJ) ankylosis in children is a great challenge for surgeons. Costochondral graft (CCG) is a common method of reconstructing the TMJ in children. However, the growth pattern of CCG is unpredictable. In this study, we introduced a surgical-orthodontic approach and evaluated the growth results of the mandible and maxilla in children with TMJ ankylosis through 3-dimensional computed tomography measurements. A prospective cohort study was conducted on child patients diagnosed as having TMJ ankylosis between September 1, 2018 and June 1, 2020. Computer-aided virtual mandibular position guided the CCG, and removable functional appliance was used after surgery. The maximal incisal opening (MIO), the maxilla height, and the length of mandibular ramus were determined. Paired t test was performed to analyze the differences among various stages. Six patients (3 females, 3 males; aged 6-9 y) were included in this study. MIO was 12.4 mm before surgery and improved to 36.8 mm after 42.8 months' follow-up. Mandible length increased by 5.1 mm in the affected side and by 5.3 mm in the unaffected side, without significant difference. The affected maxilla height increased by 6.7 mm, which was more than 5.0 mm in the unaffected side. In conclusion, continued growth of mandible and maxilla can be achieved through CCG combined with functional appliance treatment for children TMJ ankylosis.

8.
Schizophr Res ; 269: 71-78, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38749320

RESUMEN

One-third of people with schizophrenia have elevated levels of anti-gliadin antibodies (AGA IgG). A 5-week randomized double-blind pilot study was performed in 2014-2017 in an inpatient setting to test the effect of a gluten-free diet (GFD) on participants with schizophrenia or schizoaffective disorder who also had elevated AGA IgG (≥ 20 U) but were negative for celiac disease. This earlier pilot study reported that the GFD-group showed improved gastrointestinal and psychiatric symptoms, and also improvements in TNF-α and the inflammatory cytokine IL-23. Here, we performed measurements of these banked plasma samples to detect levels of oxidative stress (OxSt) using a recently developed iridium (Ir)-reducing capacity assay. Triplicate measurements of these samples showed an Intraclass Correlation Coefficient of 0.84 which indicates good reproducibility. Further, a comparison of the OxSt measurements at the baseline and 5-week end-point for this small sample size shows that the GFD-group (N = 7) had lowered OxSt levels compared to the gluten-containing diet group (GCD; N = 9; p = 0.05). Finally, we showed that improvements in OxSt over these 5 weeks were correlated to improvements in gastrointestinal (r = +0.64, p = 0.0073) and psychiatric (r = +0.52, p = 0.039) symptoms. Also, we showed a possible association between the decrease in OxSt and the lowered levels of IL-23 (r = +0.44, p = 0.087), although without statistical significance. Thus, the Ir-reducing capacity assay provides a simple, objective measure of OxSt with the results providing further evidence that inflammation, redox dysregulation and OxSt may mediate interactions between the gut and brain.

9.
Nat Commun ; 15(1): 3705, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697970

RESUMEN

Organic ultralong room-temperature phosphorescence (RTP) usually emerges instantly and immediately decays after excitation removal. Here we report a new delayed RTP that is postponed by dozens of milliseconds after excitation removal and decays in two steps including an initial increase in intensity followed by subsequent decrease in intensity. The delayed RTP is achieved through introduction of phosphines into carbazole emitters. In contrast to the rapid energy transfer from single-molecular triplet states (T1) to stabilized triplet states (Tn*) of instant RTP systems, phosphine groups insert their intermediate states (TM) between carbazole-originated T1 and Tn* of carbazole-phosphine hybrids. In addition to markedly increasing emission lifetimes by ten folds, since TM → Tn* transition require >30 milliseconds, RTP is thereby postponed by dozens of milliseconds. The emission character of carbazole-phosphine hybrids can be used to reveal information through combining instant and delayed RTP, realizing multi-level time resolution for advanced information, biological and optoelectronic applications.

10.
J Craniofac Surg ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38710032

RESUMEN

This study aimed to assess the effectiveness of intraoperative computed tomography (ICT) in managing zygomatic complex (ZMC) fractures surgically. A total of 143 patients (84 men, 59 women; average age 37.13 y) undergoing surgical treatment for ZMC fractures participated in this retrospective cohort study, with 72 in the ICT group and 71 in the control group. There were no notable differences in gender, age, time from injury to surgery, and surgical duration between the two groups. The ICT group exhibited significantly fewer surgical approaches than the control group (1.39±0.519 vs. 2.07±0.617, P<0.001). Fixation points in the ICT group (1-point: 42, 2-point: 14, 3-point: 16) significantly differed from the control group (1-point: 15, 2-point: 17, 3-point: 39), P<0.001. Symmetry of reduction was assessed through immediate postoperative images, and stability was compared between immediate postoperative images and those taken at least 3 months later. Both assessments revealed no significant differences between the 2 groups. This study indicates that ICT facilitates prompt evaluation of ZMC reduction, minimizing the necessity for incisions and internal fixation, while achieving comparable reduction efficacy and long-term stability to conventional approaches.

11.
Clin Pharmacol Ther ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711244

RESUMEN

Gene expression networks associated with placebo effects are understudied; in this study, we identified transcriptomic profiles associated with placebo responsivity. Participants suffering from chronic pain underwent a verbal suggestion and conditioning paradigm with individually tailored thermal painful stimulations to elicit conditioned placebo effects. Participants reported pain intensity on a visual analog scale (VAS) anchored from zero = no pain to 100 = maximum imaginable pain. RNA was extracted from venous blood and RNA sequencing and validation tests were performed to identify differentially expressed genes (DEGs) associated with placebo effects, controlling for sex and level of pain. Unbiased enrichment analyses were performed to identify biological processes associated with placebo effects. Of the 10,700 protein-coding genes that passed quality control filters, 667 were found to be associated with placebo effects (FDR <0.05). Most genes (97%) upregulated were associated with larger placebo effects. The 17 top transcriptome-wide significant genes were further validated via RT-qPCR in an independent cohort of chronic pain participants. Six of them (CCDC85B, FBXL15, HAGH, PI3, SELENOM, and TNFRSF4) showed positive and significant (P < 0.05) correlation with placebo effects in the cohort. The overall DEGs were highly enriched in regulation of expression of SLITs and ROBOs (R-HSA-9010553, FDR = 1.26e-33), metabolism of RNA (R-HSA-8953854, FDR = 1.34e-30), Huntington's disease (hsa05016, FDR = 9.84e-31), and ribosome biogenesis (GO:0042254, FDR = 2.67e-15); alternations in these pathways might jeopardize the proneness to elicit placebo effects. Future studies are needed to replicate this finding and better understand the unique molecular dynamics of people who are more or less affected by pain and placebo.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38604119

RESUMEN

Electrochemical reduction of CO2 to value-added products provides a feasible pathway for mitigating net carbon emissions and storing renewable energy. However, the low dimerization efficiency of the absorbed CO intermediate (*CO) and the competitive hydrogen evolution reaction hinder the selective electroreduction of CO2 to ethane (C2H6) with a high energy density. Here, we designed hydrophobic iodide-derived copper electrodes (I-Cu/Nafion) for reducing CO2 to C2H6. The Faradaic efficiency of C2H6 reached 23.37% at -0.7 V vs RHE over the I-Cu/Nafion electrode in an H-type cell, which was about 1.7 times higher than that of the I-Cu electrode. The hydrophobic properties of the I-Cu/Nafion electrodes led to an increase in the local CO2 concentration and stabilized the Cu+ species. In situ Raman characterizations and density functional theory calculations indicate that the enhanced performances could be ascribed to the strong *CO adsorption and decreased the formation energy of *COOH and *COCOH intermediates. This study highlights the effect of the hydrophobic surface on Cu-based catalysts in the electroreduction of CO2 and provides a promising way to adjust the selectivity of C2 products.

13.
Thorac Cancer ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38606839

RESUMEN

BACKGROUND: The surgical outcomes for younger patients with non-small cell lung cancer (NSCLC) remain uncertain. The aim of this study was to investigate the clinical features long-term survival outcomes in younger individuals with NSCLC following surgery. METHODS: We queried the Surveillance, Epidemiology, and End Results database from 2010 to 2017, selecting all pathologically confirmed NSCLC cases that underwent cancer-directed surgery. Younger patients were defined as those aged 18-50 years, while older patients were 51-80 years. Propensity score matching (PSM) was implemented to mitigate selection bias. Overall survival (OS) and lung cancer-specific survival (LCSS) were compared using the Kaplan-Meier method. RESULTS: Among the 33 586 treated surgically patients, 2223 (6.6%) were young. Compared to the older group, younger patients had a higher frequency of female gender, non-white ethnicity, carcinoid tumors, stage IV disease, pneumonectomy, and postoperative adjuvant therapies. The 5-year OS rates were significantly higher for younger patients (79.3% vs. 62.0%; p < 0.001), as were the 5-year LCSS rates (82.4% vs. 71.8%; p < 0.001). Post-PSM, younger patients consistently demonstrated significantly better OS and LCSS. Further stage-specific analysis revealed significantly improved 5-year OS rates at each stage and superior 5-year LCSS for stages I-II among younger patients. However, there was no statistically significant difference in LCSS for stages III-IV. CONCLUSIONS: Overall, younger patients with NSCLC treated surgically exhibit superior OS and LCSS compared to their older counterparts, although no statistically significant difference in LCSS for stages III-IV was observed between the two age groups.

14.
Langmuir ; 40(15): 8108-8114, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38568421

RESUMEN

Although intense efforts have been devoted to the development of thermally conductive epoxy resin composites, most previous works ignore the importance of the contact thermal resistance between epoxy resin composites and mating surfaces. Here, we report on epoxy resin/hexagonal boron nitride (h-BN) composites, which show low contact thermal resistance with the contacting surface by tuning adhesion energy. We found that adhesion energy increases with increasing the ratio of soybean-based epoxy resin/amino silicone oil and h-BN contents. The adhesion energy has a negative correlation with the contact thermal resistance; that is, enhancing the adhesion energy will lead to reduced contact thermal resistance. The contact thermal conductance increases with the h-BN contents and is low to 0.025 mm2·K/W for the epoxy resin/60 wt % h-BN composites, which is consistent with the theoretically calculated value. By investigating the wettability and chain dynamics of the epoxy resin/h-BN composites, we confirm that the low contact thermal resistance stems from the increased intermolecular interaction between the epoxy resin chains. The present study provides a practical approach for the development of epoxy resin composites with enhanced thermal conductivity and reduced contact thermal resistance, aiming for effective thermal management of electronics.

15.
Small ; : e2401330, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623959

RESUMEN

Cu2ZnSn (S,Se)4 (CZTSSe), a promising absorption material for thin-film solar cells, still falls short of reaching the balance limit efficiency due to the presence of various defects and high defect concentration in the thin film. During the high-temperature selenization process of CZTSSe, the diffusion of various elements and chemical reactions significantly influence defect formation. In this study, a NaOH-Se intermediate layer introduced at the back interface can optimize Cu2ZnSnS4 (CZTS)precursor films and subsequently adjust the Se and alkali metal content to favor grain growth during selenization. Through this back interface engineering, issues such as non-uniform grain arrangement on the surface, voids in bulk regions, and poor contact at the back interface of absorber layers are effectively addressed. This method not only optimizes morphology but also suppresses deep-level defect formation, thereby promoting carrier transport at both interfaces and bulk regions of the absorber layer. Consequently, CZTSSe devices with a NaOH-Se intermediate layer improved fill factor, open-circuit voltage, and efficiency by 13.3%. This work initiates from precursor thin films via back interface engineering to fabricate high-quality absorber layers while advancing the understanding regarding the role played by intermediate layers at the back interface of kesterite solar cells.

16.
Arch Toxicol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627326

RESUMEN

All areas of the modern society are affected by fluorine chemistry. In particular, fluorine plays an important role in medical, pharmaceutical and agrochemical sciences. Amongst various fluoro-organic compounds, trifluoromethyl (CF3) group is valuable in applications such as pharmaceuticals, agrochemicals and industrial chemicals. In the present study, following the strict OECD modelling principles, a quantitative structure-toxicity relationship (QSTR) modelling for the rat acute oral toxicity of trifluoromethyl compounds (TFMs) was established by genetic algorithm-multiple linear regression (GA-MLR) approach. All developed models were evaluated by various state-of-the-art validation metrics and the OECD principles. The best QSTR model included nine easily interpretable 2D molecular descriptors with clear physical and chemical significance. The mechanistic interpretation showed that the atom-type electro-topological state indices, molecular connectivity, ionization potential, lipophilicity and some autocorrelation coefficients are the main factors contributing to the acute oral toxicity of TFMs against rats. To validate that the selected 2D descriptors can effectively characterize the toxicity, we performed the chemical read-across analysis. We also compared the best QSTR model with public OPERA tool to demonstrate the reliability of the predictions. To further improve the prediction range of the QSTR model, we performed the consensus modelling. Finally, the optimum QSTR model was utilized to predict a true external set containing many untested/unknown TFMs for the first time. Overall, the developed model contributes to a more comprehensive safety assessment approach for novel CF3-containing pharmaceuticals or chemicals, reducing unnecessary chemical synthesis whilst saving the development cost of new drugs.

17.
Ultrason Sonochem ; 105: 106873, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608436

RESUMEN

Starting from the consideration of the structure of human milk fat globule (MFG), this study aimed to investigate the effects of ultrasonic treatment on milk fat globule membrane (MFGM) and soy lecithin (SL) complexes and their role in mimicking human MFG emulsions. Ultrasonic power significantly affected the structure of the MFGM-SL complex, further promoting the unfolding of the molecular structure of the protein, and then increased solubility and surface hydrophobicity. Furthermore, the microstructure of mimicking MFG emulsions without sonication was unevenly distributed, and the average droplet diameter was large. After ultrasonic treatment, the droplets of the emulsion were more uniformly dispersed, the particle size was smaller, and the emulsification properties and stability were improved to varying degrees. Especially when the ultrasonic power was 300 W, the mimicking MFG emulsion had the highest encapsulation rate and emulsion activity index and emulsion stability index were increased by 60.88 % and 117.74 %, respectively. From the microstructure, it was observed that the spherical droplets of the mimicking MFG emulsion after appropriate ultrasonic treatment remain well separated without obvious flocculation. This study can provide a reference for the screening of milk fat globules mimicking membrane materials and the further utilization and development of ultrasound in infant formula.


Asunto(s)
Emulsiones , Glucolípidos , Glicoproteínas , Lecitinas , Gotas Lipídicas , Lecitinas/química , Glucolípidos/química , Gotas Lipídicas/química , Glicoproteínas/química , Glicoproteínas/análisis , Humanos , Glycine max/química , Leche Humana/química , Fenómenos Químicos , Tamaño de la Partícula , Ondas Ultrasónicas , Sonicación
18.
Inorg Chem ; 63(16): 7430-7441, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38605566

RESUMEN

Most nonoxide catalysts based on transition metal elements will inevitably change their primitive phases under anodic oxidation conditions in alkaline media. Establishing a relationship between the bulk phase and surface evolution is imperative to reveal the intrinsic catalytic active sites. In this work, it is demonstrated that the introduction of Fe facilitates the phase transition of orthorhombic CoSe2 into its cubic counterpart and then accelerates the Co-Fe hydroxide layer generation on the surface during electrocatalytic oxygen evolution reaction (OER). As a result, the Fe-doped cubic CoSe2 catalyst exhibits a significantly enhanced activity with a considerable overpotential decrease of 79.9 and 66.9 mV to deliver 10 mA·cm-2 accompanied by a Tafel slope of 48.0 mV·dec-1 toward OER when compared to orthorhombic CoSe2 and Fe-doped orthorhombic CoSe2, respectively. Density functional theory (DFT) calculations reveal that the introduction of Fe on the surface hydroxide layers will tune electron density around Co atoms and raise the d-band center. These findings will provide deep insights into the surface reconstitution of the OER electrocatalysts based on transition metal elements.

19.
Mol Cell Proteomics ; 23(5): 100766, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608841

RESUMEN

The diagnosis of primary lung adenocarcinomas with intestinal or mucinous differentiation (PAIM) remains challenging due to the overlapping histomorphological, immunohistochemical (IHC), and genetic characteristics with lung metastatic colorectal cancer (lmCRC). This study aimed to explore the protein biomarkers that could distinguish between PAIM and lmCRC. To uncover differences between the two diseases, we used tandem mass tagging-based shotgun proteomics to characterize proteomes of formalin-fixed, paraffin-embedded tumor samples of PAIM (n = 22) and lmCRC (n = 17).Then three machine learning algorithms, namely support vector machine (SVM), random forest, and the Least Absolute Shrinkage and Selection Operator, were utilized to select protein features with diagnostic significance. These candidate proteins were further validated in an independent cohort (PAIM, n = 11; lmCRC, n = 19) by IHC to confirm their diagnostic performance. In total, 105 proteins out of 7871 proteins were significantly dysregulated between PAIM and lmCRC samples and well-separated two groups by Uniform Manifold Approximation and Projection. The upregulated proteins in PAIM were involved in actin cytoskeleton organization, platelet degranulation, and regulation of leukocyte chemotaxis, while downregulated ones were involved in mitochondrial transmembrane transport, vasculature development, and stem cell proliferation. A set of ten candidate proteins (high-level expression in lmCRC: CDH17, ATP1B3, GLB1, OXNAD1, LYST, FABP1; high-level expression in PAIM: CK7 (an established marker), NARR, MLPH, S100A14) was ultimately selected to distinguish PAIM from lmCRC by machine learning algorithms. We further confirmed using IHC that the five protein biomarkers including CDH17, CK7, MLPH, FABP1 and NARR were effective biomarkers for distinguishing PAIM from lmCRC. Our study depicts PAIM-specific proteomic characteristics and demonstrates the potential utility of new protein biomarkers for the differential diagnosis of PAIM and lmCRC. These findings may contribute to improving the diagnostic accuracy and guide appropriate treatments for these patients.

20.
Phys Chem Chem Phys ; 26(16): 12552-12563, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38595108

RESUMEN

Ganglioside GM1 is a class of glycolipids predominantly located in the nervous system. Comprising a ceramide anchor and an oligosaccharide chain containing sialic acid, GM1 plays a pivotal role in various cellular processes, including signal transduction, cell adhesion, and membrane organization. Moreover, GM1 has been implicated in the pathogenesis of several neurological disorders, such as Parkinson's disease, Alzheimer's disease, and stroke. In this study, by creating a neural cell model membrane simulation system and employing rigorous molecular models, we utilize a coarse-grained molecular dynamics approach to explore the structural and dynamic characteristics of multi-component neuronal plasma membranes at varying GM1 ganglioside concentrations. The simulation results reveal that as GM1 concentration increases, a greater number of hydrogen bonds form between GM1 molecules, resulting in the formation of larger clusters, which leads to reduced membrane fluidity, increased lipid ordering, decreased membrane thickness and surface area and higher levels of GM1 dissociation. Through a meticulous analysis, while considering GM1's structural attributes, we offer valuable insights into the structural and dynamic traits of the cell membrane. This study provides a robust methodology for exploring membrane characteristics and enhances our comprehension of GM1 molecules, serving as a resource for both experimental and computational researchers in this field.


Asunto(s)
Membrana Celular , Gangliósido G(M1) , Simulación de Dinámica Molecular , Gangliósido G(M1)/química , Gangliósido G(M1)/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Enlace de Hidrógeno , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA