Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Am Chem Soc ; 146(35): 24257-24264, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39172734

RESUMEN

The C-H hydroxylation of the pyridine C3 position is a highly desirable transformation but remains a great challenge due to the inherent electronic properties of this heterocycle core which bring difficulties in chemical reactivity and regioselectivity. Herein we present an efficient method for formal C3 selective hydroxylation of pyridines via photochemical valence isomerization of pyridine N-oxides. This metal-free transformation features operational simplicity and compatibility with a diverse array of functional groups, and the resulting hydroxylated products are amenable to further elaboration to synthetically useful building blocks. The synthetic utility of this strategy is further demonstrated in the effective late-stage functionalization of pyridine-containing medicinally relevant molecules and versatile derivatizations of 3-pyridinols.

2.
J Am Chem Soc ; 146(31): 21769-21777, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39072677

RESUMEN

Aryl amines are one of the most common moieties in biologically active molecules, and approximately 37% of drug candidates contain aromatic amines. Recent advancements in medicinal chemistry, coined "escaping from flatland", have led to a greater focus on accessing highly functionalized C (sp3)-rich amines to improve the physicochemical and pharmacokinetic properties of compounds. This article presents a modular and operationally straightforward three-component alkyl Petasis boron-Mannich (APBM) reaction that utilizes ubiquitous starting materials, including amines, aldehydes, and alkyl boronates. By adaptation of this transformation to high-throughput experimentation (HTE), it offers rapid access to an array of diverse C(sp3)-rich complex amines, amenable for rapid identification of drug candidates.

3.
Chem Sci ; 15(4): 1364-1373, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38274066

RESUMEN

Copper-catalysed radical-relay reactions that employ N-fluorobenzenesulfonimide (NFSI) as the oxidant have emerged as highly effective methods for C(sp3)-H functionalization. Herein, computational studies are paired with experimental data to investigate a series of key mechanistic features of these reactions, with a focus on issues related to site-selectivity, enantioselectivity, and C-H substrate scope. (1) The full reaction energetics of enantioselective benzylic C-H cyanation are probed, and an adduct between Cu and the N-sulfonimidyl radical (˙NSI) is implicated as the species that promotes hydrogen-atom transfer (HAT) from the C-H substrate. (2) Benzylic versus 3° C-H site-selectivity is compared with different HAT reagents: Cu/˙NSI, ˙OtBu, and Cl˙, and the data provide insights into the high selectivity for benzylic C-H bonds in Cu/NFSI-catalyzed C-H functionalization reactions. (3) The energetics of three radical functionalization pathways are compared, including radical-polar crossover (RPC) to generate a carbocation intermediate, reductive elimination from a formal CuIII organometallic complex, and radical addition to a Cu-bound ligand. The preferred mechanism is shown to depend on the ligands bound to copper. (4) Finally, the energetics of three different pathways that convert benzylic C-H bonds into benzylic cations are compared, including HAT/ET (ET = electron transfer), relevant to the RPC mechanism with Cu/NFSI; hydride transfer, involved in reactions with high-potential quinones; and sequential ET/PT/ET (PT = proton transfer), involved in catalytic photoredox reactions. Collectively, the results provide mechanistic insights that establish a foundation for further advances in radical-relay C-H functionalization reactions.

4.
Nat Chem ; 16(2): 285-293, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37884667

RESUMEN

Modular functionalization enables versatile exploration of chemical space and has been broadly applied in structure-activity relationship (SAR) studies of aromatic scaffolds during drug discovery. Recently, the bicyclo[1.1.1]pentane (BCP) motif has increasingly received attention as a bioisosteric replacement of benzene rings due to its ability to improve the physicochemical properties of prospective drug candidates, but studying the SARs of C2-substituted BCPs has been heavily restricted by the need for multistep de novo synthesis of each analogue of interest. Here we report a programmable bis-functionalization strategy to enable late-stage sequential derivatization of BCP bis-boronates, opening up opportunities to explore the SARs of drug candidates possessing multisubstituted BCP motifs. Our approach capitalizes on the inherent chemoselectivity exhibited by BCP bis-boronates, enabling highly selective activation and functionalization of bridgehead (C3)-boronic pinacol esters (Bpin), leaving the C2-Bpin intact and primed for subsequent derivatization. These selective transformations of both BCP bridgehead (C3) and bridge (C2) positions enable access to C1,C2-disubstituted and C1,C2,C3-trisubstituted BCPs that encompass previously unexplored chemical space.

5.
Shock ; 61(3): 414-423, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38150357

RESUMEN

ABSTRACT: Posthemorrhagic shock mesenteric lymph (PHSML) return-contributed excessive autophagy of vascular smooth muscle cells (VSMCs) is involved in vascular hyporeactivity, which is inhibited by stellate ganglion block (SGB) treatment. The contractile phenotype of VSMCs transforms into a synthetic phenotype after stimulation with excessive autophagy. Therefore, we hypothesized that SGB ameliorates PHSML-induced vascular hyporeactivity by inhibiting autophagy-mediated phenotypic transformation of VSMCs. To substantiate this hypothesis, a hemorrhagic shock model in conscious rats was used to observe the effects of SGB intervention or intravenous infusion of the autophagy inhibitor 3-methyladenine (3-MA) on intestinal blood flow and the expression of autophagy- and phenotype-defining proteins in mesenteric secondary artery tissues. We also investigated the effects of intraperitoneal administration of PHSML intravenous infusion and the autophagy agonist rapamycin (RAPA) on the beneficial effect of SGB. The results showed that hemorrhagic shock decreased intestinal blood flow and enhanced the expression of LC3 II/I, Beclin 1, and matrix metalloproteinase 2, which were reversed by SGB or 3-MA treatment. In contrast, RAPA and PHSML administration abolished the beneficial effects of SGB. Furthermore, the effects of PHSML or PHSML obtained from rats treated with SGB (PHSML-SGB) on cellular contractility, autophagy, and VSMC phenotype were explored. Meanwhile, the effects of 3-MA on PHSML and RAPA on PHSML-SGB were observed. The results showed that PHSML, but not PHSML-SGB, incubation decreased VSMC contractility and induced autophagy activation and phenotype transformation. Importantly, 3-MA administration reversed the adverse effects of PHSML, and RAPA treatment attenuated the effects of PHSML-SGB incubation on VSMCs. Taken together, the protective effect of SGB on vascular reactivity is achieved by inhibiting excessive autophagy-mediated phenotypic transformation of VSMCs to maintain their contractile phenotype.


Asunto(s)
Choque Hemorrágico , Ratas , Animales , Choque Hemorrágico/metabolismo , Músculo Liso Vascular , Metaloproteinasa 2 de la Matriz/farmacología , Ganglio Estrellado/metabolismo , Fenotipo , Autofagia , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
6.
Acc Chem Res ; 56(24): 3604-3615, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38051914

RESUMEN

ConspectusCross-coupling methods are the most widely used synthetic methods in medicinal chemistry. Existing reactions are dominated by methods such as amide coupling and arylation reactions that form bonds to sp2-hybridized carbon atoms and contribute to the formation of "flat" molecules. Evidence that three-dimensional structures often have improved physicochemical properties for pharmaceutical applications has contributed to growing demand for cross-coupling methods with sp3-hybridized reaction partners. Substituents attached to sp3 carbon atoms are intrinsically displayed in three dimensions. These considerations have led to efforts to establish reactions with sp3 cross-coupling partners, including alkyl halides, amines, alcohols, and carboxylic acids. As C(sp3)-H bonds are much more abundant that these more conventional coupling partners, we have been pursuing C(sp3)-H cross-coupling reactions that achieve site-selectivity, synthetic utility, and scope competitive with conventional coupling reactions.In this Account, we outline Cu-catalyzed oxidative cross-coupling reactions of benzylic C(sp3)-H bonds with diverse nucleophilic partners. These reactions commonly use N-fluorobenzenesulfonimide (NFSI) as the oxidant. The scope of reactivity is greatly improved by using a "redox buffer" that ensures that the Cu catalyst is available in the proper redox state to promote the reaction. Early precedents of catalytic Cu/NFSI oxidative coupling reactions, including C-H cyanation and arylation, did not require a redox buffer, but reactions with other nucleophiles, such as alcohols and azoles, were much less effective under similar conditions. Mechanistic studies show that some nucleophiles, such as cyanide and arylboronic acids, promote in situ reduction of CuII to CuI, contributing to successful catalytic turnover. Poor reactivity was observed with nucleophiles, such as alcohols, that do not promote CuII reduction in the same manner. This insight led to the identification of sacrificial reductants, termed "redox buffers", that support controlled generation of CuI during the reactions and enable successful benzylic C(sp3)-H cross-coupling with diverse nucleophiles. Successful reactions include those that feature direct coupling of (hetero)benzylic C-H substrates with coupling partners (alcohols, azoles) and sequential C(sp3)-H functionalization/coupling reactions. The latter methods feature generation of a synthetic linchpin that can undergo subsequent reaction with a broad array of nucleophiles. For example, halogenation/substitution cascades afford benzylic amines, (thio)ethers, and heterodiarylmethane derivatives, and an isocyanation/amine-addition sequence generates diverse benzylic ureas.Collectively, these Cu-catalyzed (hetero)benzylic C(sp3)-H cross-coupling reactions rapidly access diverse molecules. Analysis of their physicochemical and topological properties highlights the "drug-likeness" and enhanced three-dimensionality of these products relative to existing bioactive molecules. This consideration, together with the high benzylic C-H site-selectivity and the broad scope of reactivity enabled by the redox buffering strategy, makes these C(sp3)-H cross-coupling methods ideally suited for implementation in high-throughput experimentation platforms to explore novel chemical space for drug discovery and related applications.

7.
Diabetes Metab Syndr ; 17(12): 102907, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37980723

RESUMEN

AIMS: Glucagon-like peptide 1 (GLP-1) is produced by the L subtype of enteroendocrine cells (EECs). Patients with type 2 diabetes (T2D) exhibit reduced incretin effect, but the pathophysiology and functional change of the L-cells remain unclear. Deciphering the mechanisms of the biological changes in L-cells under T2D conditions may assist in the research of gut-based strategies for T2D therapy. METHODS: We investigated the fasting serum GLP-1 levels and the distribution of colonic L-cells in young and aged participants with and without T2D. Additionally, we established an aged male T2D Wistar rat model subjected to a long-term high-fat and high-fructose (HFHF) diet. Histological investigations and single-cell RNA sequencing (scRNA-seq) analyses were performed to explore the mechanisms underlying functional changes in the colonic EECs. RESULTS: We observed a decline in circulating GLP-1 levels and a reduced number of colonic L-cells in elderly patients with T2D. The mechanisms underlying impaired L-cell formation and disturbed GLP-1 production were revealed using aged T2D rats induced by a long-term HFHF diet. The scRNA-seq results showed that the transcription factors that regulate L-cell commitment, such as Foxa1, were downregulated, and the expression of genes that participate in encoding GLP-1, GLP-1 posttranslational processing, hormone secretion, and nutrient sensing was disturbed. CONCLUSIONS: Taken together, the reduced L-cell lineage commitment and disturbed L-cell functions might be the major cause of the reduced GLP-1 production in aged populations with T2D. Our study provides new insights for identifying novel targets in colonic L-cells for improving endogenous GLP-1 production.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Humanos , Ratones , Anciano , Masculino , Ratas , Animales , Células L , Ratas Wistar , Células Enteroendocrinas/metabolismo , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-alfa del Hepatocito/farmacología
8.
Zhongguo Gu Shang ; 36(10): 926-31, 2023 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-37881923

RESUMEN

OBJECTIVE: To compare the posterior cruciate ligament(PCL) index with six different measurement methods, and analyze and verify its clinical diagnostic value in anterior cruciate ligament (ACL) injury. METHODS: The Magnetic resonance imaging (MRI) data of 225 knee joints in our hospital from May 2018 to March 2022 were retrospectively analyzed, aged from 18 to 60 years old, with a median of 32 years old. On the sagittal MRI images of 114 patients with ACL injury and 111 patients with intact ACL, Measure the straight-line distance (A) between the femoral attachment point and the tibial attachment point of the PCL on the MRI sagittal image and the maximum vertical distance (B) between the straight line and the arcuate mark point of the PCL on the sagittal image, calculate the PCL index and evaluate the diagnostic value of the PCL index for ACL injury. RESULTS: The PCL index of the ACL normal group and the ACL injury group were statistically described. There was no significant difference in PCL index 1, 2, 3 and 6 between the two groups(P>0.05). The difference of PCL index 4 and 5 between the two groups was statistically significant (P<0.001). This study only found that the PCL index 2, 6 in the ACL normal group had a negative correlation with the patient's age (correlation coefficient=-0.213, -0.819;P<0.05), and the PCL index 5 in the ACL injury group was significantly correlated with the patient's body mass index(BMI)had a negative correlation (correlation coefficient=-0.277, P<0.05). CONCLUSION: The change of PCL index is helpful for the diagnosis of ACL injury, PCL index 4 and 5 can be used as effective reference indexes for diagnosing ACL injury in clinic.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Ligamento Cruzado Posterior , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Ligamento Cruzado Posterior/diagnóstico por imagen , Lesiones del Ligamento Cruzado Anterior/diagnóstico por imagen , Ligamento Cruzado Anterior , Estudios Retrospectivos , Articulación de la Rodilla , Imagen por Resonancia Magnética/métodos
9.
J Am Chem Soc ; 145(17): 9434-9440, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37084265

RESUMEN

Copper-catalyzed radical-relay reactions provide a versatile strategy for selective C-H functionalization; however, reactions with peroxide-based oxidants often require excess C-H substrate. Here, we report a photochemical strategy to overcome this limitation by using a Cu/2,2'-biquinoline catalyst that supports benzylic C-H esterification with limiting C-H substrate. Mechanistic studies indicate that blue-light irradiation promotes carboxylate-to-copper charge transfer, reducing resting-state CuII to CuI, which activates the peroxide to generate an alkoxyl radical hydrogen-atom-transfer species. This "photochemical redox buffering" introduces a unique strategy to sustain the activity of Cu catalysts in radical-relay reactions.

10.
Shock ; 59(5): 754-762, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36840514

RESUMEN

ABSTRACT: Background: Hemorrhagic shock-induced acute lung injury (ALI) is commonly associated with the posthemorrhagic shock mesenteric lymph (PHSML) return. Whether excessive autophagy is involved in PHSML-mediated ALI remains unclear. The relationship between estrogen treatment and PHSML or autophagy needs to verify. The current study will clarify the role of estrogen in reducing PHSML-mediated ALI through inhibition of autophagy. Methods: First, a hemorrhagic shock model in conscious rats was used to observe the effects of 17ß-estradiol (E2) on intestinal blood flow, pulmonary function, intestinal and pulmonary morphology, and expression of autophagy marker proteins. Meanwhile, the effect of PHSML and autophagy agonist during E2 treatment was also investigated. Secondly, rat primary pulmonary microvascular endothelial cells were used to observe the effect of PHSML, PHSML plus E2, and E2-PHSML (PHSML obtained from rats treated by E2) on the cell viability. Results: Hemorrhagic shock induced intestinal and pulmonary tissue damage and increased wet/dry ratio, reduced intestinal blood flow, along with pulmonary dysfunction characterized by increased functional residual capacity and lung resistance and decreased inspiratory capacity and peak expiratory flow. Hemorrhagic shock also enhanced the autophagy levels in intestinal and pulmonary tissue, which was characterized by increased expressions of LC3 II/I and Beclin-1 and decreased expression of p62. E2 treatment significantly attenuated these adverse changes after hemorrhagic shock, which was reversed by PHSML or rapamycin administration. Importantly, PHSML incubation decreased the viability of pulmonary microvascular endothelial cells, while E2 coincubation or E2-treated lymph counteracted the adverse roles of PHSML. Conclusions: The role of estrogen reducing PHSML-mediated ALI is associated with the inhibition of autophagy.


Asunto(s)
Lesión Pulmonar Aguda , Choque Hemorrágico , Ratas , Animales , Ratas Sprague-Dawley , Choque Hemorrágico/complicaciones , Choque Hemorrágico/tratamiento farmacológico , Choque Hemorrágico/metabolismo , Células Endoteliales/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Estrógenos/farmacología , Estrógenos/uso terapéutico , Autofagia
11.
J Am Chem Soc ; 145(1): 25-31, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36548026

RESUMEN

Heterocycles are the backbone of modern medical chemistry and drug development. The derivatization of "an olefin" inside aromatic rings represents an ideal approach to access functionalized saturated heterocycles from abundant aromatic building blocks. Here, we report an operationally simple, efficient, and practical method to selectively access hydrosilylated and reduced N-heterocycles from bicyclic aromatics via a key diradical intermediate. This approach is expected to facilitate complex heterocycle functionalizations that enable access to novel medicinally relevant scaffolds.


Asunto(s)
Quinolinas , Isoquinolinas , Estructura Molecular , Catálisis , Desarrollo de Medicamentos
12.
Nat Synth ; 2(10): 998-1008, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38463240

RESUMEN

Pharmaceutical and agrochemical discovery efforts rely on robust methods for chemical synthesis that rapidly access diverse molecules1,2. Cross-coupling reactions are the most widely used synthetic methods3, but these methods typically form bonds to C(sp2)-hybridized carbon atoms (e.g., amide coupling, biaryl coupling) and lead to a prevalence of "flat" molecular structures with suboptimal physicochemical and topological properties4. Benzylic C(sp3)-H cross-coupling methods offer an appealing strategy to address this limitation by directly forming bonds to C(sp3)-hybridized carbon atoms, and emerging methods exhibit synthetic versatility that rivals conventional cross-coupling methods to access products with drug-like properties. Here, we use a virtual library of >350,000 benzylic ethers and ureas derived from benzylic C-H cross-coupling to test the widely held view that coupling at C(sp3)-hybridized carbon atoms affords products with improved three-dimensionality. The results show that the conformational rigidity of the benzylic scaffold strongly influences the product dimensionality. Products derived from flexible scaffolds often exhibit little or no improvement in three-dimensionality, unless they adopt higher energy conformations. This outcome introduces an important consideration when designing routes to topologically diverse molecular libraries. The concepts elaborated herein are validated experimentally through an informatics-guided synthesis of selected targets and the use of high-throughput experimentation to prepare a library of three-dimensional products that are broadly distributed across drug-like chemical space.

14.
Brain Res Bull ; 181: 77-86, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35093468

RESUMEN

Hormone therapy (HT) has failed to improve learning and memory in postmenopausal women according to recent clinical studies; however, the reason for failure of HT in improving cognitive performance is unknown. In our research, we found cognitive flexibility was improved by 17ß-Estradiol (E2) in mice 1 week after ovariectomy (OVXST), but not in mice 3 months after ovariectomy (OVXLT). Isobaric tags for relative and absolute quantitation (iTRAQ) revealed increased cannabinoid receptor interacting protein 1 (CNRIP1) in E2-treated OVXLT mice compared with E2-treated OVXST mice. Adeno-associated virus 2/9 (AAV2/9) delivery of Cnrip1 short-hairpin small interfering RNA (Cnrip1-shRNA) rescued the impaired cognitive flexibility in E2 treated OVXLT mice. This effect is dependent on CB1 function, which could be blocked by AM251-a CB1 antagonist. Our results indicated a new method to increasing cognitive flexibility in women receiving HT by disrupting CNRIP1.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/farmacología , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Estradiol/farmacología , Terapia de Reemplazo de Hormonas , Corteza Prefrontal/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ovariectomía , Piperidinas/farmacología , Posmenopausia , Pirazoles/farmacología , ARN Interferente Pequeño , Receptor Cannabinoide CB1/antagonistas & inhibidores
15.
Biol Trace Elem Res ; 200(4): 1750-1762, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34185276

RESUMEN

Mastitis caused by Staphylococcus aureus infection not only causes serious economic losses, but also affects human health. Se plays an important role in body immunity. However, the mechanisms by which Se regulates mastitis induced by S. aureus are still principally unknown. The purpose of this study is to investigate whether Se can inhibit mastitis induced by S. aureus through regulation of MerTK. Sixty BALB/c female mice were fed low, normal, or high Se concentrations for 7 weeks and then randomly divided into six groups (Se-Low Control group (LSN), Se-Normal Control group (NSN), Se-High Control group (HSN), Se-Low S. aureus group (LSS), Se-Normal S. aureus group (NSS), Se-High S. aureus group (HSS)). The regulation of Se on MerTK was detected via histopathological staining, western blot analysis, enzyme-linked immunosorbent assay, and qRT-PCR. With increased selenium concentrations, the levels of IL-1ß, IL-6, and TNF-α decreased, while the phosphorylation levels of MerTK, PI3K, AKT, and mTOR increased. Therefore, this study showed that Se could alleviate S. aureus mastitis by activating MerTK and PI3K/AKT/mTOR pathway.


Asunto(s)
Mastitis , Selenio , Infecciones Estafilocócicas , Animales , Femenino , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mastitis/metabolismo , Ratones , Ratones Endogámicos BALB C , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Selenio/metabolismo , Selenio/farmacología , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Serina-Treonina Quinasas TOR , Tirosina Quinasa c-Mer
16.
Nat Commun ; 12(1): 5989, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645818

RESUMEN

Liquid-liquid phase separation promotes the formation of membraneless condensates that mediate diverse cellular functions, including autophagy of misfolded proteins. However, how phase separation participates in autophagy of dysfunctional mitochondria (mitophagy) remains obscure. We previously discovered that nuclear receptor Nur77 (also called TR3, NGFI-B, or NR4A1) translocates from the nucleus to mitochondria to mediate celastrol-induced mitophagy through interaction with p62/SQSTM1. Here, we show that the ubiquitinated mitochondrial Nur77 forms membraneless condensates capable of sequestrating damaged mitochondria by interacting with the UBA domain of p62/SQSTM1. However, tethering clustered mitochondria to the autophagy machinery requires an additional interaction mediated by the N-terminal intrinsically disordered region (IDR) of Nur77 and the N-terminal PB1 domain of p62/SQSTM1, which confers Nur77-p62/SQSTM1 condensates with the magnitude and liquidity. Our results demonstrate how composite multivalent interaction between Nur77 and p62/SQSTM1 coordinates to sequester damaged mitochondria and to connect targeted cargo mitochondria for autophagy, providing mechanistic insight into mitophagy.


Asunto(s)
Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Triterpenos Pentacíclicos/farmacología , Proteína Sequestosoma-1/genética , Animales , Complejo IV de Transporte de Electrones , Femenino , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Proteínas Luminiscentes , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/metabolismo , Mitofagia/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión , Reología , Proteína Sequestosoma-1/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Proteína Fluorescente Roja
17.
J Am Chem Soc ; 143(36): 14438-14444, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34464528

RESUMEN

Azoles are important motifs in medicinal chemistry, and elaboration of their structures via direct N-H/C-H coupling could have broad utility in drug discovery. The ambident reactivity of many azoles, however, presents significant selectivity challenges. Here, we report a copper-catalyzed method that achieves site-selective cross-coupling of pyrazoles and other N-H heterocycles with substrates bearing (hetero)benzylic C-H bonds. Excellent N-site selectivity is achieved, with the preferred site controlled by the identity of co-catalytic additives. This cross-coupling strategy features broad scope for both the N-H heterocycle and benzylic C-H coupling partners, enabling application of this method to complex molecule synthesis and medicinal chemistry.


Asunto(s)
Azoles/síntesis química , Compuestos de Bencilo/química , Catálisis , Cobre/química , Indanos/química , Estructura Molecular , Oxidantes/química , Oxidación-Reducción , Sulfonamidas/química
18.
Biol Trace Elem Res ; 199(2): 594-603, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32328968

RESUMEN

Selenium (Se) is an essential trace element that maintains normal physiological functions in organisms. Since the discovery of glutathione peroxidase (GSH-PX), public interest in selenoproteins has gradually increased. Based on previous studies, dietary Se maintains erythrocyte homeostasis through selenoprotein-induced mediation of redox reactions. Furthermore, both the surface phosphatidylserine (PS) and intramembrane stomatin contents can be used as indicators of erythrocyte osmotic fragility. This study focused on the mechanism by which dietary Se deficiency increases erythrocyte osmotic fragility. We fed Se-deficient grain to mice for 8 weeks to establish a Se deficiency model in mice. We measured Se levels in the blood as well as the activities of antioxidant enzymes associated with selenoproteins in a Se-deficient environment. We used Western blotting, routine blood analysis, and other methods to detect red blood cell oxidative stress levels, membrane stomatin levels, and PS externalization. Fresh blood was collected to test erythrocyte osmotic fragility. The results showed that antioxidant enzyme activity was affected by dietary Se deficiency. Oxidative stress increased lipid peroxidation and the ROS content in the blood of the mice. Under such conditions, decreased PS exposure and stomatin content in the erythrocyte membrane eventually affected the structure of the erythrocyte membrane and increased erythrocyte osmotic fragility.


Asunto(s)
Selenio , Animales , Eritrocitos/metabolismo , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido , Ratones , Fragilidad Osmótica , Estrés Oxidativo , Fosfatidilserinas
19.
J Am Chem Soc ; 142(26): 11388-11393, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32539355

RESUMEN

Site selectivity represents a key challenge for non-directed C-H functionalization, even when the C-H bond is intrinsically reactive. Here, we report a copper-catalyzed method for benzylic C-H azidation of diverse molecules. Experimental and density functional theory studies suggest the benzyl radical reacts with a CuII-azide species via a radical-polar crossover pathway. Comparison of this method with other C-H azidation methods highlights its unique site selectivity, and conversions of the benzyl azide products into amine, triazole, tetrazole, and pyrrole functional groups highlight the broad utility of this method for target molecule synthesis and medicinal chemistry.


Asunto(s)
Azidas/síntesis química , Compuestos de Bencilo/química , Cobre/química , Azidas/química , Catálisis , Estructura Molecular
20.
Nat Catal ; 3(4): 358-367, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32368720

RESUMEN

Cross-coupling reactions enable rapid, convergent synthesis of diverse molecules and provide the foundation for modern chemical synthesis. The most widely used methods employ sp2-hybridized coupling partners, such as aryl halides or related pre-functionalized substrates. Here, we demonstrate copper-catalysed oxidative cross coupling of benzylic C-H bonds with alcohols to afford benzyl ethers, enabled by a redox-buffering strategy that maintains the activity of the copper catalyst throughout the reaction. The reactions employ the C-H substrate as the limiting reagent and exhibit broad scope with respect to both coupling partners. This approach to direct site-selective functionalization of C(sp3)-H bonds provides the basis for efficient three-dimensional diversification of organic molecules and should find widespread utility in organic synthesis, particularly for medicinal chemistry applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA