Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
2.
Nat Med ; 30(2): 470-479, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38253798

RESUMEN

Prenatal cell-free DNA (cfDNA) screening uses extracellular fetal DNA circulating in the peripheral blood of pregnant women to detect prevalent fetal chromosomal anomalies. However, numerous severe conditions with underlying single-gene defects are not included in current prenatal cfDNA screening. In this prospective, multicenter and observational study, pregnant women at elevated risk for fetal genetic conditions were enrolled for a cfDNA screening test based on coordinative allele-aware target enrichment sequencing. This test encompasses the following three of the most frequent pathogenic genetic variations: aneuploidies, microdeletions and monogenic variants. The cfDNA screening results were compared to invasive prenatal or postnatal diagnostic test results for 1,090 qualified participants. The comprehensive cfDNA screening detected a genetic alteration in 135 pregnancies with 98.5% sensitivity and 99.3% specificity relative to standard diagnostics. Of 876 fetuses with suspected structural anomalies on ultrasound examination, comprehensive cfDNA screening identified 55 (56.1%) aneuploidies, 6 (6.1%) microdeletions and 37 (37.8%) single-gene pathogenic variants. The inclusion of targeted monogenic conditions alongside chromosomal aberrations led to a 60.7% increase (from 61 to 98) in the detection rate. Overall, these data provide preliminary evidence that a comprehensive cfDNA screening test can accurately identify fetal pathogenic variants at both the chromosome and single-gene levels in high-risk pregnancies through a noninvasive approach, which has the potential to improve prenatal evaluation of fetal risks for severe genetic conditions arising from heterogenous molecular etiologies. ClinicalTrials.gov registration: ChiCTR2100045739 .


Asunto(s)
Ácidos Nucleicos Libres de Células , Pruebas Prenatales no Invasivas , Embarazo , Humanos , Femenino , Diagnóstico Prenatal/métodos , Estudios Prospectivos , Aneuploidia , Ácidos Nucleicos Libres de Células/genética
3.
Protein Cell ; 15(1): 52-68, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37294900

RESUMEN

Here, we report a previously unrecognized syndromic neurodevelopmental disorder associated with biallelic loss-of-function variants in the RBM42 gene. The patient is a 2-year-old female with severe central nervous system (CNS) abnormalities, hypotonia, hearing loss, congenital heart defects, and dysmorphic facial features. Familial whole-exome sequencing (WES) reveals that the patient has two compound heterozygous variants, c.304C>T (p.R102*) and c.1312G>A (p.A438T), in the RBM42 gene which encodes an integral component of splicing complex in the RNA-binding motif protein family. The p.A438T variant is in the RRM domain which impairs RBM42 protein stability in vivo. Additionally, p.A438T disrupts the interaction of RBM42 with hnRNP K, which is the causative gene for Au-Kline syndrome with overlapping disease characteristics seen in the index patient. The human R102* or A438T mutant protein failed to fully rescue the growth defects of RBM42 ortholog knockout ΔFgRbp1 in Fusarium while it was rescued by the wild-type (WT) human RBM42. A mouse model carrying Rbm42 compound heterozygous variants, c.280C>T (p.Q94*) and c.1306_1308delinsACA (p.A436T), demonstrated gross fetal developmental defects and most of the double mutant animals died by E13.5. RNA-seq data confirmed that Rbm42 was involved in neurological and myocardial functions with an essential role in alternative splicing (AS). Overall, we present clinical, genetic, and functional data to demonstrate that defects in RBM42 constitute the underlying etiology of a new neurodevelopmental disease which links the dysregulation of global AS to abnormal embryonic development.


Asunto(s)
Fisura del Paladar , Cardiopatías Congénitas , Discapacidad Intelectual , Femenino , Animales , Ratones , Humanos , Preescolar , Discapacidad Intelectual/genética , Cardiopatías Congénitas/genética , Facies , Hipotonía Muscular
5.
J Mol Diagn ; 25(9): 682-691, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37599029

RESUMEN

Twin pregnancy constitutes significant risks for maternal and fetal health, which is usually detected by ultrasound examination at early gestation. However, the imaging-based approach may not accurately identify all twins confounded by practical or clinical variables. The analysis of fetal cell-free DNA in noninvasive prenatal screening assays can completement the ultrasound method for twin detection, which differentiates fraternal or identical twins based on their distinct genotypes. Here, a new noninvasive prenatal screening employing high-coverage next-generation sequencing for targeted nucleotide polymorphisms was developed for detection of zygosity and determination of fetal fraction in twin pregnancies. This method utilizes a binary analysis of both the number and allelic fraction of fetus-specific single-nucleotide polymorphisms to infer the zygosity. In 323 samples collected from 215 singleton, 90 dizygotic, and 18 monozygotic twin pregnancies, all 90 dizygotic twins were correctly detected, with a 100% sensitivity and a 100% specificity. In addition, this method can detect complex pregnancies, such as egg donors, contamination, and twins with complete hydatidiform mole. The fetus-specific fetal fraction change was monitored in nine dizygotic twin pregnancies, which demonstrated highly variable dynamics of fetal cell-free DNA turnover up to 7 weeks after twin reduction. Overall, this study provides a new noninvasive prenatal screening strategy for the accurate identification of twin zygosity and quantification of fetal fraction, which has important clinical implications for the management of twin pregnancies.


Asunto(s)
Ácidos Nucleicos Libres de Células , Embarazo Gemelar , Femenino , Embarazo , Humanos , Embarazo Gemelar/genética , Polimorfismo de Nucleótido Simple , Feto , Alelos
6.
Front Immunol ; 14: 1213902, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649476

RESUMEN

Background: Term birth (TB) and preterm birth (PTB) are characterized by uterine contractions, rupture of the chorioamniotic membrane, decidual activation, and other physiological and pathological changes. In this study, we hypothesize that inflammation can cause changes in mRNA expression and metabolic stability in the placenta, decidua, chorioamniotic membrane, uterus and peripheral blood, ultimately leading to PTB. Methods: To comprehensively assess the effects of inflammation on mRNA expression and metabolite production in different tissues of pregnancy, we used a mouse PTB model by intraperitoneally injecting lipopolysaccharide (LPS) and integrated transcriptomics and metabolomics studies. Results: Our analysis identified 152 common differentially expressed genes (DEGs) and 8 common differentially expressed metabolites (DEMs) in the placenta, decidua, chorioamniotic membrane, uterus, and peripheral blood, or placenta and uterus after LPS injection, respectively. Our bioinformatics analysis revealed significant enrichment of the NOD-like receptor signaling pathway (mmu04621), TNF signaling pathway (mmu04668), IL-17 signaling pathway (mmu04657), and NF-kappa B signaling pathway in the transcriptomics of different tissues, and Hormone synthesis, Lysosome, NOD-like receptor signaling pathway, and Protein digest and absorption pathway in metabolomics. Moreover, we found that several upstream regulators and master regulators, including STAT1, STAT3, and NFKB1, were altered after exposure to inflammation in the different tissues. Interaction network analysis of transcriptomics and metabolomics DEGs and DEMs also revealed functional changes in mice intraperitoneally injected with LPS. Conclusions: Overall, our study identified significant and biologically relevant alterations in the placenta, decidua, chorioamniotic membrane, uterus, peripheral blood transcriptome and the placenta and uterus metabolome in mice exposed to LPS. Thus, a comprehensive analysis of different pregnancy tissues in mice intraperitoneally injected with LPS by combining transcriptomics and metabolomics may help to systematically understand the local and systemic changes associated with PTB caused by inflammation.


Asunto(s)
Lipopolisacáridos , Nacimiento Prematuro , Recién Nacido , Femenino , Embarazo , Humanos , Animales , Ratones , Transcriptoma , Metabolómica , Modelos Animales de Enfermedad , Inflamación/inducido químicamente , Proteínas NLR , ARN Mensajero
7.
J Assist Reprod Genet ; 40(9): 2157-2173, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37450097

RESUMEN

BACKGROUND: Expanded carrier screening (ECS) has become a common practice for identifying carriers of monogenic diseases. However, existing large gene panels are not well-tailored to Chinese populations. In this study, ECS testing for pathogenic variants of both single-nucleotide variants (SNVs) and copy number variants (CNVs) in 330 genes implicated in 342 autosomal recessive (AR) or X-linked diseases was carried out. We assessed the differences in allele frequencies specific to the Chinese population who have used assisted reproductive technology (ART) and the important genes to screen for in this population. METHODOLOGY: A total of 300 heterosexual couples were screened by our ECS panel using next-generation sequencing. A customed bioinformatic algorithm was used to analyze SNVs and CNVs. Guidelines from the American College of Medical Genetics and Genomics and the Association for Molecular Pathology were adapted for variant interpretation. Pathogenic or likely pathogenic (P/LP) SNVs located in high homology regions/deletions and duplications of one or more exons in length were independently verified with other methods. RESULTS: 64.83% of the patients were identified to be carriers of at least one of 342 hereditary conditions. We identified 622 P/LP variants, 4.18% of which were flagged as CNVs. The rate of at-risk couples was 3%. A total of 149 AR diseases accounted for 64.05% of the cumulative carrier rate, and 48 diseases had a carrier rate above 1/200 in the test. CONCLUSION: An expanded screening of inherited diseases by incorporating different variant types, especially CNVs, has the potential to reduce the occurrence of severe monogenic diseases in the offspring of patients using ART in China.


Asunto(s)
Pueblos del Este de Asia , Tamización de Portadores Genéticos , Enfermedades Genéticas Congénitas , Técnicas Reproductivas Asistidas , Humanos , China/epidemiología , Pueblos del Este de Asia/genética , Exones , Frecuencia de los Genes/genética , Pruebas Genéticas , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/prevención & control
8.
IEEE J Biomed Health Inform ; 27(9): 4579-4590, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37318973

RESUMEN

Reliable chromosome detection in metaphase cell (MC) images can greatly alleviate the workload of cytogeneticists for karyotype analysis and the diagnosis of chromosomal disorders. However, it is still an extremely challenging task due to the complicated characteristics of chromosomes, e.g., dense distributions, arbitrary orientations, and various morphologies. In this article, we propose a novel rotated-anchor-based detection framework, named DeepCHM, for fast and accurate chromosome detection in MC images. Our framework has three main innovations: 1) A deep saliency map representing chromosomal morphological features is learned end-to-end with semantic features. This not only enhances the feature representations for anchor classification and regression but also guides the anchor setting to significantly reduce redundant anchors. This accelerates the detection and improves the performance; 2) A hardness-aware loss weights the contribution of positive anchors, which effectively reinforces the model to identify hard chromosomes; 3) A model-driven sampling strategy addresses the anchor imbalance issue by adaptively selecting hard negative anchors for model training. In addition, a large-scale benchmark dataset with a total of 624 images and 27,763 chromosome instances was built for chromosome detection and segmentation. Extensive experimental results demonstrate that our method outperforms most state-of-the-art (SOTA) approaches and successfully handles chromosome detection, with an AP score of 93.53%.


Asunto(s)
Benchmarking , Semántica , Humanos , Metafase , Carga de Trabajo , Cromosomas
9.
Front Endocrinol (Lausanne) ; 14: 1130536, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152951

RESUMEN

Background: Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary kidney disorder mostly caused by mutations in PKD1 or PKD2 genes. Here, we report thirteen ADPKD males with infertility and investigated the sperm morphological defects associated with PC1 disruption. Methods: Targeted next-generation sequencing was performed to detect PKD1 variants in patients. Sperm morphology was observed by immunostaining and transmission electron microscopy, and the sperm motility was assessed using the computer-assisted sperm analysis system. The Hippo signaling pathway was analyzed with by quantitative reverse transcription polymerase chain reaction (qPCR) and western blotting in vitro. Results: The ADPKD patients were infertile and their sperm tails showed morphological abnormalities, including coiled flagella, absent central microtubules, and irregular peripheral doublets. In addition, the length of sperm flagella was shorter in patients than in controls of in in. In vitro, ciliogenesis was impaired in Pkd1-depleted mouse kidney tubule cells. The absence of PC1 resulted in a reduction of MST1 and LATS1, leading to nuclear accumulation of YAP/TAZ and consequently increased transcription of Aurka. which might promote HDAC6-mediated ciliary disassembly. Conclusion: Our results suggest the dysregulated Hippo signaling significantly contributes to ciliary abnormalities in and may be associated with flagellar defects in spermatozoa from ADPKD patients.


Asunto(s)
Vía de Señalización Hippo , Riñón Poliquístico Autosómico Dominante , Canales Catiónicos TRPP , Animales , Humanos , Masculino , Ratones , Riñón Poliquístico Autosómico Dominante/complicaciones , Riñón Poliquístico Autosómico Dominante/genética , Semen , Motilidad Espermática , Espermatozoides/patología , Canales Catiónicos TRPP/genética
11.
J Clin Med ; 12(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36836222

RESUMEN

Schaaf-Yang Syndrome (SYS) is a genetic disorder caused by truncating pathogenic variants in the paternal allele of the maternally imprinted, paternally expressed gene MAGEL2 and is characterized by genital hypoplasia, neonatal hypotonia, developmental delay, intellectual disability, autism spectrum disorder (ASD), and other features. In this study, eleven SYS patients from three families were enrolled and comprehensive clinical features were gathered regarding each family. Whole-exome sequencing (WES) was performed for the definitive molecular diagnosis of the disease. Identified variants were validated using Sanger sequencing. Three couples underwent PGT for monogenic diseases (PGT-M) and/or a prenatal diagnosis. Haplotype analysis was performed to deduce the embryo's genotype by using the short tandem repeats (STRs) identified in each sample. The prenatal diagnosis results showed that the fetus in each case did not carry pathogenic variants, and all the babies of the three families were born at full term and were healthy. We also performed a review of SYS cases. In addition to the 11 patients in our study, a total of 127 SYS patients were included in 11 papers. We summarized all variant sites and clinical symptoms thus far, and conducted a genotype-phenotype correlation analysis. Our results also indicated that the variation in phenotypic severity may depend on the specific location of the truncating variant, suggestive of a genotype-phenotype association.

13.
J Med Genet ; 60(9): 910-917, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36707240

RESUMEN

BACKGROUND: De novo mutations (DNMs) are linked with many severe early-onset disorders ranging from rare congenital malformation to intellectual disability. Conventionally, DNMs are considered to have an estimated recurrence rate of 1%. Recently, studies have revealed a higher prevalence of parental mosaicism, leading to a greater recurrence risk, resulting in a second child harbouring the same DNM as a previous child. METHODS: In this study, we included 10 families with DNMs leading to adverse pregnancy outcomes. DNA was extracted from tissue samples, including parental peripheral blood, parental saliva and paternal sperm. High-throughput sequencing was used to screen for parental mosaicism with a depth of more than 5000× on average and a variant allele fraction (VAF) detection limit of 0.5%. RESULTS: The presence of mosaicism was detected in sperms in two families, with VAFs of 2.8% and 2.5%, respectively. Both families have a history of multiple adverse pregnancies and DNMs shared by siblings. Preimplantation genetic testing (PGT) and prenatal diagnosis were performed in one family, thereby preventing the reoccurrence of DNMs. CONCLUSION: This study is the first to report the successful implementation of PGT for monogenic/single gene defects in the parental mosaicism family. Our study suggests that mosaic detection of paternal sperm is warranted in families with recurrent DNMs leading to adverse pregnancy outcomes, and PGT can effectively block the transmission of the pathogenic mutation.


Asunto(s)
Mosaicismo , Semen , Niño , Embarazo , Femenino , Humanos , Masculino , Pruebas Genéticas , Mutación/genética , Familia
14.
Cell Discov ; 8(1): 109, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229437

RESUMEN

Current non-invasive prenatal screening (NIPS) analyzes circulating fetal cell-free DNA (cfDNA) in maternal peripheral blood for selected aneuploidies or microdeletion/duplication syndromes. Many genetic disorders are refractory to NIPS largely because the maternal genetic material constitutes most of the total cfDNA present in the maternal plasma, which hinders the detection of fetus-specific genetic variants. Here, we developed an innovative sequencing method, termed coordinative allele-aware target enrichment sequencing (COATE-seq), followed by multidimensional genomic analyses of sequencing read depth, allelic fraction, and linked single nucleotide polymorphisms, to accurately separate the fetal genome from the maternal background. Analytical confounders including multiple gestations, maternal copy number variations, and absence of heterozygosity were successfully recognized and precluded for fetal variant analyses. In addition, fetus-specific genomic characteristics, including the cfDNA fragment length, meiotic error origins, meiotic recombination, and recombination breakpoints were identified which reinforced the fetal variant assessment. In 1129 qualified pregnancies tested, 54 fetal aneuploidies, 8 microdeletions/microduplications, and 8 monogenic variants were detected with 100% sensitivity and 99.3% specificity. Using the comprehensive cfDNA genomic analysis tools developed, we found that 60.3% of aneuploidy samples had aberrant meiotic recombination providing important insights into the mechanism underlying meiotic nondisjunctions. Altogether, we show that the genetic deconvolution of the fetal and maternal cfDNA enables thorough and accurate delineation of fetal genome which paves the way for the next-generation prenatal screening of essentially all types of human genetic disorders.

15.
Front Genet ; 13: 989041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160002

RESUMEN

Objective: Paternal sperm mosaicism has few consequences for fathers for mutations being restricted to sperm. However, it could potentially underlie severe sporadic disease in their offspring. Here, we present a live birth of a female infant from a father with low-level sperm DNA mosaicism achieved via preimplantation genetic testing for monogenic disorders (PGT-M). Methods: A couple with the father carrying sperm DNA mosaicism received standard in vitro fertilization treatment, with intracytoplasmic sperm injection, embryo biopsy, polymerase chain reaction, and DNA analysis. Only one unaffected embryo was transferred to the uterine cavity. Amniocentesis was performed at the 16th week of gestation by copy-number variation-sequencing, karyotyping, and Sanger sequencing. Results: Eight surviving embryos were biopsied during the blastocyst stage. Karyomapping and Sanger sequencing were applied to detect the euploidy and paternal mutation. After performing PGT-M, followed by successful pregnancy, the prenatal genetic diagnoses revealed that the fetus was unaffected, and one healthy girl was born. Conclusion: This is the first reported live birth with unaffected children achieved via PGT for a low-level germline mosaicism father. It not only opens the possibility of preventing the recurrent monogenic disease of children among gonadal mosaicism families but also alerts clinicians to consider gonadal mosaicism as the source of DMNs.

16.
Front Physiol ; 13: 893744, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991164

RESUMEN

Recurrent pregnancy loss (RPL) is a major type of pathological pregnancy that still lacks reliable early diagnosis and effective treatment. The placenta is critical to fetal development and pregnancy success because it participates in critical processes such as early embryo implantation, vascular remodeling, and immunological tolerance. RPL is associated with abnormalities in the biological behavior of placental villous trophoblasts, resulting in aberrant placental function. MicroRNAs (miRNAs) are increasingly being recognized as essential regulators of placental development, as well as potential biomarkers. In this study, plasma miRNAs and placental messenger RNAs (mRNAs) from RPL patients and normal pregnant (NP) controls were sequenced and analyzed. Compared to those in NP controls, 108 circulating miRNAs and 1199 placental mRNAs were differentially expressed in RPL samples. A total of 140 overlapping genes (overlapping between plasma miRNA target genes and actual placental disorder genes) were identified, and functional enrichment analysis showed that these genes were mainly related to cell proliferation, angiogenesis, and cell migration. The regulatory network among miRNAs, overlapping genes, and downstream biological processes was analyzed by protein-protein interactions and Cytoscape. Moreover, enriched mRNAs, which were predictive targets of the differentially expressed plasma miRNAs miR-766-5p, miR-1285-3p, and miR-520a-3p, were accordingly altered in the placenta. These results suggest that circulating miRNAs may be involved in the pathogenesis of RPL and are potential noninvasive biomarkers for RPL.

17.
Hum Genomics ; 16(1): 28, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35897115

RESUMEN

BACKGROUND: High-cost, time-consuming and complex processes of several current approaches limit the use of noninvasive prenatal diagnosis (NIPD) for monogenic disorders in clinical application. Thus, a more cost-effective and easily implementable approach is required. METHODS: We established a low-cost and convenient test to noninvasively deduce fetal genotypes of the mutation and single nucleotide polymorphisms (SNPs) loci by means of targeted amplification combined with deep sequencing of maternal genomic and plasma DNA. The sequential probability ratio test was performed to detect the allelic imbalance in maternal plasma. This method can be employed to directly examine familial pathogenic mutations in the fetal genome, as well as infer the inheritance of parental haplotypes through a group of selected SNPs linked to the pathogenic mutation. RESULTS: The fetal mutations in 17 families with different types of monogenic disorders including hemophilia A, von Willebrand disease type 3, Duchenne muscular dystrophy, hyper-IgM type 1, glutaric acidemia type I, Nagashima-type palmoplantar keratosis, and familial exudative vitreoretinopathy were identified in the study. The mutations included various forms: point mutations, gene inversion, deletions/insertions and duplication. The results of 12 families were verified by sequencing of amniotic fluid samples, the accuracy of the approach in fetal genotyping at the mutation and SNPs loci was 98.85% (172/174 loci), and the no-call rate was 28.98% (71/245 loci). The overall accuracy was 12/12 (100%). Moreover, the approach was successfully applied in plasma samples with a fetal fraction as low as 2.3%. CONCLUSIONS: We have shown in this study that the approach is a cost-effective, less time consuming and accurate method for NIPD of monogenic disorders.


Asunto(s)
Feto , Diagnóstico Prenatal , Femenino , Genotipo , Haplotipos , Humanos , Nucleótidos , Polimorfismo de Nucleótido Simple/genética , Embarazo , Diagnóstico Prenatal/métodos
18.
Front Immunol ; 13: 917383, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860261

RESUMEN

Objective: Preterm birth (PTB) is a typical inflammatory disease with unclear pathogenesis. The studies investigating the relationship between anti-inflammatory factors IL-4 and IL-10 gene polymorphisms and PTB produced conflicting results. This systematic review and meta-analysis aimed to summarize the effects of IL-4 and IL-10 gene polymorphisms and clarify their possible association with PTB. Methods: A systematic literature review was conducted using PubMed, Web of Science, and Cochrane library (up to 02 April 2022). The MeSH terms, related entry terms, and other names in "Gene" database were used to find relevant articles. A fixed- or random-effects model was used to calculate the significance of IL-4 and IL-10 gene polymorphisms, depending on study heterogeneity. The odds ratios (OR) and 95% confidence intervals (CIs) were calculated in the allele, recessive, dominant, co-dominant, and over-dominant models. The Eggers publication bias plot was used to graphically represent the publication bias. Results: Polymorphisms in two interleukins (IL-4-590C/T (rs2243250) = 5 and IL-10-592A/C (rs1800872), -819T/C (rs1800871) and -1082A/G (rs1800896) = 16) were found in 21 articles. Overall, only the over-dominant gene model AA + GG vs. AG revealed significant association between IL-10-1082A/G (rs1800896) and PTB (OR [95% CI] = 0.87 [0.76, 0.99], p = 0.04). However, in the allele model, recessive model, dominant model, co-dominant model, and over-dominant model, the polymorphisms for IL-4-590C/T (rs2243250), IL-10-592A/C (rs1800872), and IL-10-819T/C (rs1800871) were not found to be associated with the risk of PTB. In gene models, no statistically significant association was found between IL-4-590C/T (rs2243250), IL-10-592A/C (rs1800872), IL-10-819T/C (rs1800871), and IL-10-1082A/G (rs1800896) polymorphisms and PTB in subgroup analyses by racial or control group Hardy-Weinberg Equilibrium (HWE) p-value. Eggers's publication bias plot and heterogeneity test (I2<50%, p = 0.05) of IL-10-1082A/G (rs1800896) suggested that the funnel asymmetry could be due to publication bias rather than heterogeneity. Conclusion: The current study suggests that the over-dominant gene model AA + GG vs. AG of IL-10-1082A/G (rs1800896) polymorphism may be associated with genetic susceptibility to PTB and may have a protective function against PTB risk. There was unclear association found between IL-4-590C/T (rs2243250), IL-10-592A/C (rs1800872) and IL-10-819T/C (rs1800871) polymorphisms and PTB. Due to the limitations of included studies and the risk of publication bias, additional research is required to confirm our findings. Systematic Review Registration: https://inplasy.com/inplasy-2022-4-0044, identifier INPLASY202240044.


Asunto(s)
Interleucina-10/genética , Interleucina-4/genética , Nacimiento Prematuro , Estudios de Casos y Controles , Femenino , Humanos , Recién Nacido , Polimorfismo Genético , Nacimiento Prematuro/genética
19.
BMJ Open ; 12(7): e063030, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831058

RESUMEN

INTRODUCTION: Conventional intracytoplasmic sperm injection (ICSI) is a widely used treatment for couples with severe male infertility. However, there are controversies regarding the selection and the damage to gametes during the ICSI procedure. Although preimplantation genetic testing for aneuploidies (PGT-A) can give genetic information about embryos for transfer and improve fertility rate, and it is widely used in women with recurrent spontaneous abortion or advanced age, PGT-A is not only more expensive but also has unclear effectiveness with respect to the improvement of fertility rate among couples with severe male infertility. High-quality, well-powered randomised clinical trials (RCTs) comparing ICSI+PGT-A and ICSI are lacking. METHODS AND ANALYSIS: This is a protocol for a multicenter, open-label RCT in four reproductive medical centers qualified for PGT technique in China. We will study couples with severe male infertility scheduled for their fertility treatment. After the blastocyst culture, eligible participants are randomised to the ICSI+PGT-A group or the conventional ICSI group in a 1:1 ratio. Other assisted reproductive procedures are similar and parallel between the two groups. The primary outcome will be live birth rate and cumulative live-birth rate . Secondary outcomes will be embryo implantation rate, biochemical pregnancy rate, clinical pregnancy rate, spontaneous abortion rate, ongoing pregnancy rate, preterm birth rate, fetal chromosomal abnormality rate, birth defect rate and treatment complications. To demonstrate or refute a difference between the two groups, we plan to include 188 participants in each group; taking consideration of 20% of dropout, the total target sample size is 450. ETHICS AND DISSEMINATION: Ethical approval was obtained from International Peace Maternity and Child Health Hospital of Shanghai Jiao Tong University Medical Science Research Ethics Committee (GKLW2016-16). Informed consent will be obtained from each participant. The findings will be disseminated to the public through conference presentations and publication in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov, NCT02941965.


Asunto(s)
Aborto Espontáneo , Infertilidad Masculina , Aborto Espontáneo/genética , Aneuploidia , Niño , China , Femenino , Fertilización In Vitro , Pruebas Genéticas/métodos , Humanos , Recién Nacido , Infertilidad Masculina/genética , Infertilidad Masculina/terapia , Nacimiento Vivo , Masculino , Estudios Multicéntricos como Asunto , Embarazo , Índice de Embarazo , Ensayos Clínicos Controlados Aleatorios como Asunto
20.
Front Endocrinol (Lausanne) ; 13: 849534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399940

RESUMEN

Recent studies have suggested that sperm mitochondrial DNA copy number (mtDNA-CN), DNA fragmentation index (DFI), and reactive oxygen species (ROS) content are crucial to sperm function. However, the associations between these measurements and embryo development and pregnancy outcomes in assisted reproductive technology (ART) remain unclear. Semen samples were collected from 401 participants, and seminal quality, parameters of sperm concentration, motility, and morphology were analyzed by a computer-assisted sperm analysis system. DFI, mtDNA-CN, and ROS levels were measured using sperm chromatin structure assay, real-time quantitative polymerase chain reaction, and ROS assay, respectively. Among the participants, 126 couples underwent ART treatments, including in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), and 79 of the couples had embryos transferred. In 401 semen samples, elevated mtDNA-CN and DFI were associated with poor seminal quality. In 126 ART couples, only mtDNA-CN was negatively correlated with the fertilization rate, but this correlation was not significant after adjusting for male age, female age, seminal quality, ART strategy, number of retrieved oocytes, controlled stimulation protocols, and cycle rank. Regarding pregnancy outcomes, sperm mtDNA-CN, ROS, and DFI were not associated with the clinical pregnancy rate or live birth rate in 79 transferred cases. In conclusion, increased mtDNA-CN and DFI in sperm jointly contributed to poor seminal quality, but sperm mtDNA-CN, ROS, and DFI were not associated with clinical outcomes in ART.


Asunto(s)
Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Fragmentación del ADN , ADN Mitocondrial/genética , Femenino , Humanos , Masculino , Embarazo , Especies Reactivas de Oxígeno , Técnicas Reproductivas Asistidas , Espermatozoides/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA