Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Zool Res ; 45(3): 575-585, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38766742

RESUMEN

Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation. However, effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and differentiation via traditional methods is difficult. Advances in technology have led to the emergence of many single-cell transcriptome sequencing protocols, which have partially addressed these challenges. In this review, we detail the principles of 10x Genomics technology and summarize the methods for downstream analysis of single-cell transcriptome sequencing data. Furthermore, we explore the role of single-cell transcriptome sequencing in revealing the heterogeneity of testicular ecological niche cells, delineating the establishment and disruption of testicular immune homeostasis during human spermatogenesis, investigating abnormal spermatogenesis in humans, and, ultimately, elucidating the molecular evolution of mammalian spermatogenesis.


Asunto(s)
Evolución Molecular , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Espermatogénesis , Espermatogénesis/genética , Animales , Análisis de la Célula Individual/métodos , Masculino , Análisis de Secuencia de ARN/métodos , Humanos , Transcriptoma , Testículo
2.
Kaohsiung J Med Sci ; 40(1): 35-45, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37877496

RESUMEN

Sepsis-induced myocardial injury is one of the most difficult complications of sepsis in intensive care units. Annexin A1 (ANXA1) short peptide (ANXA1sp) protects organs during the perioperative period. However, the protective effect of ANXA1sp against sepsis-induced myocardial injury remains unclear. We aimed to explore the protective effects and mechanisms of ANXA1sp against sepsis-induced myocardial injury both in vitro and in vivo. Cellular and animal models of myocardial injury in sepsis were established with lipopolysaccharide. The cardiac function of mice was assessed by high-frequency echocardiography. Elisa assay detected changes in inflammatory mediators and markers of myocardial injury. Western blotting detected autophagy and mitochondrial biosynthesis-related proteins. Autophagic flux changes were observed by confocal microscopy, and autophagosomes were evaluated by TEM. ATP, SOD, ROS, and MDA levels were also detected.ANXA1sp pretreatment enhanced the 7-day survival rate, improved cardiac function, and reduced TNF-α, IL-6, IL-1ß, CK-MB, cTnI, and LDH levels. ANXA1sp significantly increased the expression of sirtuin-3 (SIRT3), mitochondrial biosynthesis-related proteins peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), and mitochondrial transcription factor A (TFAM). ANXA1sp increased mitochondrial membrane potential (△Ψm), ATP, and SOD, and decreased ROS, autophagy flux, the production of autophagosomes per unit area, and MDA levels. The protective effect of ANXA1sp decreased significantly after SIRT3 silencing in vitro and in vivo, indicating that the key factor in ANXA1sp's protective role is the upregulation of SIRT3. In summary, ANXA1sp attenuated sepsis-induced myocardial injury by upregulating SIRT3 to promote mitochondrial biosynthesis and inhibit oxidative stress and autophagy.


Asunto(s)
Sepsis , Sirtuina 3 , Ratones , Animales , Sirtuina 3/genética , Sirtuina 3/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/genética , Mitocondrias/metabolismo , Estrés Oxidativo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Autofagia/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Sepsis/complicaciones , Sepsis/genética , Sepsis/metabolismo
3.
Food Sci Nutr ; 11(10): 6459-6469, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37823169

RESUMEN

Obesity is characterized by chronic inflammation, insulin resistance, and gut microbiota dysbiosis. Dioscorea opposita Thunb. is a traditional food and medicine homolog from China. In the present study, polysaccharides isolated from a water extract of Dioscorea opposita Thunb. (DOTPs) were prepared. We showed that DOTPs reduced body weight, accumulation of fat tissues, insulin resistance, and inflammation in high-fat diet (HFD)-fed mice. Further experiments showed that DOTPs could regulate the composition of the gut microbiota in HFD mice. DOTPs supplementation in HFD-fed mice resulted in the reduction of the Firmicutes-to-Bacteroidetes ratio. We further demonstrated that DOTPs supplementation enhanced bacterial levels of Akkermansia and reduced levels of Ruminiclostridium_9. A significant reduction of glycolysis metabolism related to obesity and gut microbiota dysbiosis was also observed upon administration of DOTPs. Our results suggest that DOTPs can produce significant anti-obesity effects, by inhibiting systematic inflammation and ameliorating gut microbiota dysbiosis in diet-induced obese mice.

4.
Front Neurol ; 14: 1254090, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719759

RESUMEN

Objective: The objective of this study is to systematically evaluate prediction models for post-thrombectomy brain edema in acute ischemic stroke (AIS) patients. This analysis aims to equip clinicians with evidence-based guidance for the selection of appropriate prediction models, thereby facilitating the early identification of patients at risk of developing brain edema post-surgery. Methods: A comprehensive literature search was conducted across multiple databases, including PubMed, Web of Science, Embase, The Cochrane Library, CNKI, Wanfang, and Vip, aiming to identify studies on prediction models for post-thrombectomy brain edema in AIS patients up to January 2023. Reference lists of relevant articles were also inspected. Two reviewers independently screened the literature and extracted data. The Prediction Model Risk of Bias Assessment Tool (PROBAST) and the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) guidelines were employed to assess study bias and literature quality, respectively. We then used random-effects bivariate meta-analysis models to summarize the studies. Results: The review included five articles, yielding 10 models. These models exhibited a relatively high risk of bias. Random effects model demonstrated that the AUC was 0.858 (95% CI 0.817-0.899). Conclusion: Despite the promising discriminative ability shown by studies on prediction models for post-thrombectomy brain edema in AIS patients, concerns related to a high risk of bias and limited external validation remain. Future research should prioritize the external validation and optimization of these models. There is an urgent need for large-scale, multicenter studies to develop robust, user-friendly models for real-world clinical application. Systematic review registration: https://www.crd.york.ac.uk, unique Identifier: CRD42022382790.

5.
Biology (Basel) ; 12(6)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37372044

RESUMEN

The Pacific oyster (Crassostrea gigas) aquaculture industry increased rapidly in China with the introduction and promotion of triploid oysters in recent years. Mass mortalities affecting different life stages of Pacific oysters emerged periodically in several important production areas of Northern China. During 2020 and 2021, we conducted a passive two-year investigation of infectious pathogens linked to mass mortality. Ostreid herpesvirus-1 (OsHV-1) was detected to be associated with mass mortalities of hatchery larvae, but not juveniles and adults in the open sea. Protozoan parasites, such as Marteilia spp., Perkinsus spp. and Bonamia spp. were not detected. Bacterial isolation and identification revealed that Vibrio natriegens and Vibrio alginolyticus were the most frequently (9 out of 13) identified two dominant bacteria associated with mass mortalities. Pseudoalteromonas spp. was identified as the dominant bacteria in three mortality events that occurred during the cold season. Further bacteriological analysis was conducted on two representative isolates of V. natriegens and V. alginolyticus, designated as CgA1-1 and CgA1-2. Multisequence analysis (MLSA) showed that CgA1-1 and CgA1-2 were closely related to each other and nested within the Harveyi clade. Bacteriological investigation revealed faster growth, and more remarkable haemolytic activity and siderophore production capacity at 25 °C than at 15 °C for both CgA1-1 and CgA1-2. The accumulative mortalities of experimental immersion infections were also higher at 25 °C (90% and 63.33%) than at 15 °C (43.33% and 33.33%) using both CgA1-1 and CgA1-2, respectively. Similar clinical and pathological features were identified in samples collected during both naturally and experimentally occurring mortalities, such as thin visceral mass, discolouration, and connective tissue and digestive tube lesions. The results presented here highlight the potential risk of OsHV-1 to hatchery production of larvae, and the pathogenic role of V. natriegens and V. alginolyticus during mass mortalities of all life stages of Pacific oysters in Northern China.

6.
World J Stem Cells ; 15(4): 248-267, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37181002

RESUMEN

BACKGROUND: Fibroblast plays a major role in tendon-bone healing. Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) can activate fibroblasts and promote tendon-bone healing via the contained microRNAs (miRNAs). However, the underlying mechanism is not comprehensively understood. Herein, this study aimed to identify overlapped BMSC-derived exosomal miRNAs in three GSE datasets, and to verify their effects as well as mechanisms on fibroblasts. AIM: To identify overlapped BMSC-derived exosomal miRNAs in three GSE datasets and verify their effects as well as mechanisms on fibroblasts. METHODS: BMSC-derived exosomal miRNAs data (GSE71241, GSE153752, and GSE85341) were downloaded from the Gene Expression Omnibus (GEO) database. The candidate miRNAs were obtained by the intersection of three data sets. TargetScan was used to predict potential target genes for the candidate miRNAs. Functional and pathway analyses were conducted using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively, by processing data with the Metascape. Highly interconnected genes in the protein-protein interaction (PPI) network were analyzed using Cytoscape software. Bromodeoxyuridine, wound healing assay, collagen contraction assay and the expression of COL I and α-smooth muscle actin positive were applied to investigate the cell proliferation, migration and collagen synthesis. Quantitative real-time reverse transcription polymerase chain reaction was applied to determine the cell fibroblastic, tenogenic, and chondrogenic potential. RESULTS: Bioinformatics analyses found two BMSC-derived exosomal miRNAs, has-miR-144-3p and has-miR-23b-3p, were overlapped in three GSE datasets. PPI network analysis and functional enrichment analyses in the GO and KEGG databases indicated that both miRNAs regulated the PI3K/Akt signaling pathway by targeting phosphatase and tensin homolog (PTEN). In vitro experiments confirmed that miR-144-3p and miR-23b-3p stimulated proliferation, migration and collagen synthesis of NIH3T3 fibroblasts. Interfering with PTEN affected the phosphorylation of Akt and thus activated fibroblasts. Inhibition of PTEN also promoted the fibroblastic, tenogenic, and chondrogenic potential of NIH3T3 fibroblasts. CONCLUSION: BMSC-derived exosomes promote fibroblast activation possibly through the PTEN and PI3K/Akt signaling pathways, which may serve as potential targets to further promote tendon-bone healing.

7.
Zool Res ; 44(3): 505-521, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37070575

RESUMEN

Bacterial or viral infections, such as Brucella, mumps virus, herpes simplex virus, and Zika virus, destroy immune homeostasis of the testes, leading to spermatogenesis disorder and infertility. Of note, recent research shows that SARS-CoV-2 can infect male gonads and destroy Sertoli and Leydig cells, leading to male reproductive dysfunction. Due to the many side effects associated with antibiotic therapy, finding alternative treatments for inflammatory injury remains critical. Here, we found that Dmrt1 plays an important role in regulating testicular immune homeostasis. Knockdown of Dmrt1 in male mice inhibited spermatogenesis with a broad inflammatory response in seminiferous tubules and led to the loss of spermatogenic epithelial cells. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that Dmrt1 positively regulated the expression of Spry1, an inhibitory protein of the receptor tyrosine kinase (RTK) signaling pathway. Furthermore, immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP) analysis indicated that SPRY1 binds to nuclear factor kappa B1 (NF-κB1) to prevent nuclear translocation of p65, inhibit activation of NF-κB signaling, prevent excessive inflammatory reaction in the testis, and protect the integrity of the blood-testis barrier. In view of this newly identified Dmrt1- Spry1-NF-κB axis mechanism in the regulation of testicular immune homeostasis, our study opens new avenues for the prevention and treatment of male reproductive diseases in humans and livestock.


Asunto(s)
Fertilidad , Homeostasis , FN-kappa B , Testículo , FN-kappa B/metabolismo , Fertilidad/genética , Fertilidad/inmunología , Humanos , Masculino , Testículo/inmunología , Testículo/metabolismo , Homeostasis/inmunología , Animales , Ratones , Células HEK293 , Espermatogénesis , Inflamación , Regiones Promotoras Genéticas/genética , Activación Transcripcional , Técnicas de Silenciamiento del Gen
8.
Mol Neurobiol ; 60(8): 4232-4245, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37059931

RESUMEN

The overproduction of neurotoxic amyloid-ß (Aß) peptides in the brain is a hallmark of Alzheimer's disease (AD). To determine the role of intracellular zinc ion (iZn2+) dysregulation in mediating Aß-related neurotoxicity, this study aimed to investigate whether N, N, N', N'­tetrakis (2­pyridylmethyl) ethylenediamine (TPEN), a Zn2+­specific chelator, could attenuate Aß25-35­induced neurotoxicity and the underlying mechanism. We used the 3-(4, 5-dimethyl-thiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay to measure the viability of primary hippocampal neurons. We also determined intracellular Zn2+ and Ca2+ concentrations, mitochondrial and lysosomal functions, and intracellular reactive oxygen species (ROS) content in hippocampal neurons using live-cell confocal imaging. We detected L-type voltage-gated calcium channel currents (L-ICa) in hippocampal neurons using the whole­cell patch­clamp technique. Furthermore, we measured the mRNA expression levels of proteins related to the iZn2+ buffer system (ZnT-3, MT-3) and voltage-gated calcium channels (Cav1.2, Cav1.3) in hippocampal neurons using RT-PCR. The results showed that TPEN attenuated Aß25-35­induced neuronal death, relieved the Aß25-35­induced increase in intracellular Zn2+ and Ca2+ concentrations; reversed the Aß25-35­induced increase in ROS content, the Aß25-35­induced increase in the L-ICa peak amplitude at different membrane potentials, the Aß25-35­induced the dysfunction of the mitochondria and lysosomes, and the Aß25-35­induced decrease in ZnT-3 and MT-3 mRNA expressions; and increased the Cav1.2 mRNA expression in the hippocampal neurons. These results suggest that TPEN, the Zn2+-specific chelator, attenuated Aß25-35­induced neuronal damage, correlating with the recovery of intracellular Zn2+ and modulation of abnormal Ca2+-related signaling pathways.


Asunto(s)
Péptidos beta-Amiloides , Neuronas , Especies Reactivas de Oxígeno/metabolismo , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Neuronas/metabolismo , Zinc/farmacología , Zinc/metabolismo , Quelantes , ARN Mensajero/metabolismo , Fragmentos de Péptidos/toxicidad , Fragmentos de Péptidos/metabolismo , Apoptosis
9.
Antioxidants (Basel) ; 12(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36670986

RESUMEN

To determine the anti-heat stress and antioxidant effects of genistein and the underlying mechanisms, lipofuscin, reactive oxygen species (ROS), and survival under stress were first detected in Caenorhabditis elegans (C. elegans); then the localization and quantification of the fluorescent protein was determined by detecting the fluorescently labeled protein mutant strain; in addition, the aging-related mRNAs were detected by applying real-time fluorescent quantitative PCR in C. elegans. The results indicate that genistein substantially extended the lifespan of C. elegans under oxidative stress and heat conditions; and remarkably reduced the accumulation of lipofuscin in C. elegans under hydrogen peroxide (H2O2) and 35 °C stress conditions; in addition, it reduced the generation of ROS caused by H2O2 and upregulated the expression of daf-16, ctl-1, hsf-1, hsp-16.2, sip-1, sek-1, pmk-1, and eat-2, whereas it downregulated the expression of age-1 and daf-2 in C. elegans; similarly, it upregulated the expression of daf-16, sod-3, ctl-1, hsf-1, hsp-16.2, sip-1, sek-1, pmk-1, jnk-1 skn-1, and eat-2, whereas it downregulated the expression of age-1, daf-2, gst-4, and hsp-12.6 in C. elegans at 35 °C; moreover, it increased the accumulation of HSP-16.2 and SKN-1 proteins in nematodes under 35 °C and H2O2 conditions; however, it failed to prolong the survival time in the deleted mutant MQ130 nematodes under 35 °C and H2O2 conditions. These results suggest that genistein promote anti-heat stress and antioxidant effects in C. elegans via insulin/-insulin-like growth factor signaling (IIS), heat shock protein (HSP), mitogen-activated protein kinase (MAPK), dietary restriction (DR), and mitochondrial pathways.

10.
Insect Sci ; 30(1): 109-124, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35608046

RESUMEN

The mechanism of sex pheromone reception in the male cotton bollworm Helicoverpa armigera has been extensively studied because it has become an important model system for understanding insect olfaction. However, the pathways of pheromone processing from the antenna to the primary olfactory center in H. armigera have not yet been clarified. Here, the physiology and morphology of male H. armigera olfactory sensory neurons (OSNs) were studied using single sensillum recording along with anterograde filling and intracellular recording with retrograde filling. OSNs localized in type A sensilla responded to the major pheromone component cis-11-hexadecenal, and the axonal terminals projected to the cumulus (Cu) of the macroglomerular complex (MGC). The OSNs in type B sensilla responded to the behavioral antagonist cis-9-tetradecenal, and the axonal terminals projected to the dorsomedial anterior (DMA) unit of the MGC. In type C sensilla, there were 2 OSNs: one that responded to cis-9-tetradecenal and cis-11-hexadecenol with the axonal terminals projecting to the DMA, and another that responded to the secondary pheromone components cis-9-hexadecenal and cis-9-tetradecenal with the axonal terminals projecting to the dorsomedial posterior (DMP) unit of the MGC. Type A and type B sensilla also housed the secondary OSNs, which were silent neurons with axonal terminals projected to the glomerulus G49 and DMP. Overall, the neural pathways that carry information on attractiveness and aversiveness in response to female pheromone components in H. armigera exhibit distinct projections to the MGC units.


Asunto(s)
Mariposas Nocturnas , Neuronas Receptoras Olfatorias , Atractivos Sexuales , Masculino , Femenino , Animales , Neuronas Receptoras Olfatorias/metabolismo , Mariposas Nocturnas/fisiología , Feromonas , Atractivos Sexuales/metabolismo
11.
Zool Res ; 44(1): 63-77, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36317480

RESUMEN

Stearyl coenzyme A desaturase (SCD), also known as delta-9 desaturase, catalyzes the rate-limiting step in the formation of monounsaturated fatty acids. In mammals, depletion or inhibition of SCD activity generally leads to a decrease in triglycerides and cholesteryl esters. However, the endogenous role of scd in teleost fish remains unknown. Here, we generated a zebrafish scd mutant (scd-/-) to elucidate the role of scd in lipid metabolism and sexual development. Gas chromatography-mass spectrometry (GC-MS) showed that the scd-/- mutants had increased levels of saturated fatty acids C16:0 and C18:0, and decreased levels of monounsaturated fatty acids C16:1 and C18:1. The mutant fish displayed a short stature and an enlarged abdomen during development. Unlike Scd-/- mammals, the scd-/- zebrafish showed significantly increased fat accumulation in the whole body, especially in the liver, leading to hepatic mitochondrial dysfunction and severe cell apoptosis. Mechanistically, srebf1, a gene encoding a transcriptional activator related to adipogenesis, acc1 and acaca, genes involved in fatty acid synthesis, and dgat2, a key gene involved in triglyceride synthesis, were significantly upregulated in mutant livers to activate fatty acid biosynthesis and adipogenesis. The scd-/- males exhibited defective natural mating behavior due to defective genital papillae but possessed functional mature sperm. All defects in the scd-/- mutants could be rescued by ubiquitous transgenic overexpression of scd. In conclusion, our study demonstrates that scd is indispensable for maintaining lipid homeostasis and development of secondary sexual characteristics in zebrafish.


Asunto(s)
Estearoil-CoA Desaturasa , Pez Cebra , Masculino , Animales , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Semen/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos/metabolismo , Mamíferos
12.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361834

RESUMEN

In this study, we developed a sustained-release transdermal delivery system containing losartan potassium (LP) and verapamil hydrochloride (VPH). LP and VPH have low bioavailability and long half-life. Therefore, the development of an optimum administration mode is necessary to overcome these drawbacks and enhance the antihypertensive effect. A transdermal diffusion meter was used to determine the optimal formulation of LP-VPH transdermal drug delivery systems (TDDS). Based on in vitro results, a sustained-release patch was prepared. Physical characteristics, including quality, stickiness, and appearance, were evaluated in vitro, while pharmacokinetics and skin irritation were evaluated in vivo. The results showed that 8.3% polyvinyl alcohol, 74.7% polyvinylpyrrolidone K30, 12% oleic acid-azone, and 5% polyacrylic acid resin II provided an optimized TDDS product for effective administration of LP and VPH. Furthermore, in vitro and in vivo release tests showed that the system continuously released LP and VPH for 24 h. The pharmacokinetic results indicated that although the maximum concentration was lower, both the area under the curve from 0-time and the mean residence time of the prepared patch were significantly higher than those of the oral preparations. Furthermore, the prepared LP-VPH transdermal patch showed good stability and no skin irritation. The developed LP-VPH TDDS showed a sustained-release effect and good characteristics and pharmacokinetics; therefore, it is an ideal formulation.


Asunto(s)
Losartán , Verapamilo , Preparaciones de Acción Retardada/farmacocinética , Absorción Cutánea , Administración Cutánea , Sistemas de Liberación de Medicamentos/métodos
13.
Oxid Med Cell Longev ; 2022: 1115749, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783187

RESUMEN

The precise control of cardiomyocyte viability is imperative to combat myocardial ischemia-reperfusion injury (I/R), in which apoptosis and pyroptosis putatively contribute to the process. Recent researches indicated that GSDMD is involved in I/R as an executive protein of pyroptosis. However, its effect on other forms of cell death is unclear. We identified that GSDMD and GSDMD-N levels were significantly upregulated in the I/R myocardium of mice. Knockout of GSDMD conferred the resistance of the hearts to reperfusion injury in the acute phase of I/R but aggravated reperfusion injury in the chronic phase of I/R. Mechanistically, GSDMD deficiency induced the activation of PARylation and the consumption of NAD+ and ATP, leading to cardiomyocyte apoptosis. Moreover, PJ34, a putative PARP-1 inhibitor, reduced the myocardial injury caused by GSDMD deficiency. Our results reveal a novel action modality of GSDMD in the regulation of cardiomyocyte death; inhibition of GSDMD activates PARylation, suggesting the multidirectional role of GSDMD in I/R and providing a new theory for clinical treatment.


Asunto(s)
Daño por Reperfusión Miocárdica , Animales , Ratones , Ratones Noqueados , Miocitos Cardíacos , Poli ADP Ribosilación , Piroptosis
14.
Sensors (Basel) ; 22(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35898034

RESUMEN

Due to the short supply of conventional fill materials, such as sand, land reclamation using dredged marine deposits has recently been proposed, in which marine deposits with high water content are blow-filled into reclaiming areas. The strength development of the filled marine soils is of great importance during the sedimentation and consolidation to guide the filling process and construction of reclamation. In this study, a novel sensor based on optical frequency domain reflectometry (OFDR) technology with a simple design was developed for undrained shear strength measurement. The novel sensor consists of an optical fiber and a series of polyoxymethylene coins. Owing to the merits of OFDR technology on high resolution, fully distributed sensing, and immunity to electromagnetic interference, the novel sensor can be used to determine undrained shear strength profiles of very soft to soft marine sediments/soils with good accuracy. The sensor was calibrated in remolded marine deposits with different water contents. The good feasibility and performance of the novel sensor for undrained shear strength measurement were well validated in two physical model tests on marine deposits treated by horizontal drains with vacuum preloading.

15.
Front Neuroanat ; 16: 844171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360650

RESUMEN

The fall armyworm Spodoptera frugiperda (S. frugiperda) (Lepidoptera: Noctuidae) is a worldwide, disruptive, agricultural pest species. The larvae of S. frugiperda feed on seedling, leave, and kernel of crops with chewing mouthparts, resulting in reduced crop yields. Serotonin is an important biogenic amine acting as a neural circuit modulator known to mediate lots of behaviors including feeding in insects. In order to explore the serotonergic neural network in the nervous system of larval S. frugiperda, we performed immunohistochemical experiments to examine the neuropil structure of the brain and the gnathal ganglion with antisynapsin and to examine their serotonergic neurons with antiserotonin serum. Our data show that the brain of larval S. frugiperda contains three neuromeres: the tritocerebrum, the deutocerebrum, and the protocerebrum. The gnathal ganglion also contains three neuromeres: the mandibular neuromere, the maxillary neuromere, and the labial neuromere. There are about 40 serotonergic neurons in the brain and about 24 serotonergic neurons in the gnathal ganglion. Most of these neurons are wide-field neurons giving off processes in several neuropils of the brain and the gnathal ganglion. Serotonergic neuron processes are mainly present in the protocerebrum. A pair of serotonergic neurons associated with the deutocerebrum has arborizations in the contralateral antennal lobe and bilateral superior lateral protocerebra. In the gnathal ganglion, the serotonergic neuron processes are also widespread throughout the neuropil and some process projections extend to the tritocerebrum. These findings on the serotonergic neuron network in larval S. frugiperda allow us to explore the important roles of serotonin in feeding and find a potential approach to modulate the feeding behavior of the gluttonous pest and reduce its damage.

16.
Sci Transl Med ; 14(639): eabh2557, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35385340

RESUMEN

Diabetic neuropathic pain (DNP) is a common and devastating complication in patients with diabetes. The mechanisms mediating DNP are not completely elucidated, and effective treatments are lacking. A-fiber sensory neurons have been shown to mediate the development of mechanical allodynia in neuropathic pain, yet the molecular basis underlying the contribution of A-fiber neurons is still unclear. Here, we report that the orphan G protein-coupled receptor 177 (GPR177) in A-fiber neurons drives DNP via WNT5a-mediated activation of transient receptor potential vanilloid receptor-1 (TRPV1) ion channel. GPR177 is mainly expressed in large-diameter A-fiber dorsal root ganglion (DRG) neurons and required for the development of DNP in mice. Mechanistically, we found that GPR177 mediated the secretion of WNT5a from A-fiber DRG neurons into cerebrospinal fluid (CSF), which was necessary for the maintenance of DNP. Extracellular perfusion of WNT5a induced rapid currents in both TRPV1-expressing heterologous cells and nociceptive DRG neurons. Computer simulations revealed that WNT5a has the potential to bind the residues at the extracellular S5-S6 loop of TRPV1. Using a peptide able to disrupt the predicted WNT5a/TRPV1 interaction suppressed DNP- and WNT5a-induced neuropathic pain symptoms in rodents. We confirmed GPR177/WNT5A coexpression in human DRG neurons and WNT5A secretion in CSF from patients with DNP. Thus, our results reveal a role for WNT5a as an endogenous and potent TRPV1 agonist, and the GPR177-WNT5a-TRPV1 axis as a driver of DNP pathogenesis in rodents. Our findings identified a potential analgesic target that might relieve neuropathic pain in patients with diabetes.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Péptidos y Proteínas de Señalización Intracelular , Neuralgia , Receptores Acoplados a Proteínas G , Canales Catiónicos TRPV , Proteína Wnt-5a , Animales , Diabetes Mellitus/metabolismo , Neuropatías Diabéticas/metabolismo , Ganglios Espinales/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Neuralgia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/metabolismo , Proteína Wnt-5a/metabolismo
17.
Front Physiol ; 13: 839559, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295575

RESUMEN

Large numbers of chemosensory genes have been identified in the peripheral sensory organs of the pest Mythimna separata (Walker) to increase our understanding of chemoreception-related molecular mechanisms and to identify molecular targets for pest control. Chemosensory-related genes are expressed in various tissues, including non-sensory organs, and they play diverse roles. To better understand the functions of chemosensory-related genes in non-sensory organs, transcriptomic analyses of M. separata brains were performed. In total, 29 odorant-binding proteins (OBPs) and 16 chemosensory proteins (CSPs) putative genes were identified in the transcriptomic data set. The further examination of sex- and tissue-specific expression using RT-PCR suggested that eight OBPs (OBP5, -7, -11, -13, -16, -18, -21, and -24) and eight CSPs (CSP2-4, -8, CSP10-12, and -15) genes were expressed in the brain. Furthermore, bands representing most OBPs and CSPs could be detected in antennae, except for a few that underwent sex-biased expression in abdomens, legs, or wings. An RT-qPCR analysis of the expression profiles of six OBPs (OBP3-5, -9, -10, and -16) and two CSPs (CSP3 and CSP4) in different tissues and sexes indicated that OBP16 was highly expressed in male brain, and CSP3 and CSP4 were female-biased and highly expressed in brain. The expression levels of OBP5 and OBP10 in brain were not significantly different between the sexes. The findings expand our current understanding of the expression patterns of OBPs and CSPs in M. separata sensory and non-sensory tissues. These results provide valuable reference data for exploring novel functions of OBPs and CSPs in M. separata and may help in developing effective biological control strategies for managing this pest by exploring novel molecular targets.

18.
Ying Yong Sheng Tai Xue Bao ; 33(1): 191-200, 2022 Jan.
Artículo en Chino | MEDLINE | ID: mdl-35224941

RESUMEN

The variation of water level is the main environmental factor controlling the growth of aquatic vegetation. It is of significance to understand its influences on aquatic vegetation coverage in sub-lakes under different hydrolo-gical control modes. Taking the free connected sub-lake Bang Lake and locally controlled sub-lake Dahuchi Lake of Poyang Lake as a case and based on remote sensing cloud computing platform of the Google Earth Engine (GEE), we used the pixel binary model to estimate aquatic vegetation coverage from 2000 to 2019, and analyzed the temporal and spatial differentiation characteristics, and the variation trend was simulated by combining the method of Sen+M-K. We analyzed the water level change characteristics during the study period and the relationship between the hydrological parameters and the aquatic vegetation coverage area of sub-lakes with different hydrological connectivity was explored by setting up the water level fluctuation parameters. The results showed that the aquatic vegetation coverage of Bang Lake was more susceptible to water level changes, while Dahuchi Lake was more stable. The aquatic vegetation was patchily and sporadically distributed in the years with low vegetation coverage. In the years with high vegetation coverage, it was distributed in a ring-like pattern, spreading from the center of the lake to the shore. The aquatic vegetation coverage of Bang Lake was more likely influenced by water level fluctuation rate, while the aquatic vegetation coverage of Dahuchi Lake was more likely influenced by the flooding duration of 17 m characteristic water level. The flooding duration of 19 m characteristic water level had a strong negative correlation with the aquatic vegetation coverage of Bang Lake and Dahuchi Lake. The trend of aquatic vegetation in Bang Lake was dominated by stabilization and slight improvement, while that in Dahuchi Lake was dominated by stabilization and significant degradation. Our results could help to further understand the dynamics of water hydrological ecosystem with different hydrological connectivity and provide a reference for lake management and conservation.


Asunto(s)
Ecosistema , Lagos , China , Inundaciones , Hidrología , Agua
19.
Insect Sci ; 29(3): 730-748, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34427391

RESUMEN

The sense of taste plays a crucial role in herbivorous insects by discriminating nutrients from complex plant metabolic compounds. The peripheral coding of taste has been thoroughly studied in many insect species, but the central gustatory pathways are poorly described. In the present study, we characterized single neurons in the gnathal ganglion of Helicoverpa armigera larvae using the intracellular recording/staining technique. We identified different types of neurons, including sensory neurons, interneurons, and motor neurons. The morphologies of these neurons were largely diverse and their arborizations seemingly covered the whole gnathal ganglion. The representation of the single neurons responding to the relevant stimuli of sweet and bitter cues showed no distinct patterns in the gnathal ganglion. We postulate that taste signals may be processed in a manner consistent with the principle of population coding in the gnathal ganglion of H. armigera larvae.


Asunto(s)
Lepidópteros , Mariposas Nocturnas , Animales , Herbivoria , Larva/fisiología , Células Receptoras Sensoriales/metabolismo , Gusto/fisiología
20.
Mol Brain ; 14(1): 124, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34384467

RESUMEN

To understand the role of intracellular zinc ion (Zn2+) dysregulation in mediating age-related neurodegenerative changes, particularly neurotoxicity resulting from the generation of excessive neurotoxic amyloid-ß (Aß) peptides, this study aimed to investigate whether N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a Zn2+-specific chelator, could attenuate Aß25-35-induced neurotoxicity and the underlying electrophysiological mechanism. We used the 3-(4, 5-dimethyl-thiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay to measure the viability of hippocampal neurons and performed single-cell confocal imaging to detect the concentration of Zn2+ in these neurons. Furthermore, we used the whole-cell patch-clamp technique to detect the evoked repetitive action potential (APs), the voltage-gated sodium and potassium (K+) channels of primary hippocampal neurons. The analysis showed that TPEN attenuated Aß25-35-induced neuronal death, reversed the Aß25-35-induced increase in intracellular Zn2+ concentration and the frequency of APs, inhibited the increase in the maximum current density of voltage-activated sodium channel currents induced by Aß25-35, relieved the Aß25-35-induced decrease in the peak amplitude of transient outward K+ currents (IA) and outward-delayed rectifier K+ currents (IDR) at different membrane potentials, and suppressed the steady-state activation and inactivation curves of IA shifted toward the hyperpolarization direction caused by Aß25-35. These results suggest that Aß25-35-induced neuronal damage correlated with Zn2+ dysregulation mediated the electrophysiological changes in the voltage-gated sodium and K+ channels. Moreover, Zn2+-specific chelator-TPEN attenuated Aß25-35-induced neuronal damage by recovering the intracellular Zn2+ concentration.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Etilenodiaminas/farmacología , Proteínas del Tejido Nervioso/fisiología , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/toxicidad , Canales de Potasio con Entrada de Voltaje/fisiología , Canales de Sodio Activados por Voltaje/fisiología , Zinc/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Células Cultivadas , Femenino , Hipocampo/citología , Activación del Canal Iónico/efectos de los fármacos , Masculino , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA