Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
3.
Se Pu ; 42(9): 866-874, 2024 Sep.
Artículo en Chino | MEDLINE | ID: mdl-39198945

RESUMEN

Concerns over the emergence of steroid hormones as pollutants in water have grown. Steroid hormone compounds present challenges in the simultaneous detection of total residual hormones owing to their analogous structures and diverse types. In this study, we established a rapid and high-throughput continuous online method based on solid phase extraction (SPE) coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the simultaneous determination of 61 hormone components, including 48 glucocorticoids, 1 mineralocorticoid, 4 androgens, and 8 progesterones, in water. Various SPE columns were investigated to assess their extraction efficiency for enriching and purifying target compounds in a large sample volume (1 L). An HC-C18 SPE column was selected because of its superior performance. Acetonitrile was used as a washing solution during SPE to ensure that the majority of the tested substances achieved recoveries exceeding 70% and effectively avoid interferences from water-soluble components. Various C8 and C18 columns were tested, and the optimal HPLC conditions for hormone retention were established. We systematically evaluated different UPLC columns and mobile phases, including methanol-water and acetonitrile-water systems with 0.1% formic acid added to the aqueous phase. The optimized UPLC conditions were as follows: BEH C18 column (100 mm×2.1 mm, 1.7 µm); column temperature, 40 ℃; flow rate, 0.3 mL/min; injection volume, 5 µL; mobile phase A: 0.1% formic acid aqueous phase; mobile phase B: acetonitrile. Gradient elution was performed as follows: 0-0.5 min, 30%B; 0.5-15.0 min, 30%B-75%B; 15.0-18.0 min, 75%B-98%B; 18.0-19.0 min, 98%B; 19.0-19.1 min, 98%B-30%B; 19.1-20.0 min, 30%B. Both positive- and negative-ion modes were explored in the UPLC-MS/MS experiment to obtain the full scan of the parent ions, and positive mode was finally selected for electrospray ionization (ESI). Two product ions exhibiting strong signals and minimal interference were selected for quantitative and qualitative ion analyses, using an external standard method for quantification. MS/MS was performed in positive-ion (ESI+) mode with multiple reaction monitoring (MRM) scanning. The MS/MS parameters were as follows: atomizing gas pressure, 379 kPa; curtain air pressure, 241 kPa; spray voltage, 5500 V; desolvation temperature, 550 ℃; collision exit voltage (CXP), 13 V; intake voltage (EP), 10 V; and residence time of each ion pair, 0.5 ms. Other instrument settings, such as the collision energy and declustering voltage, were also optimized. The 61 hormones exhibited excellent linear relationships within their corresponding concentration ranges, with correlation coefficients greater than 0.99. The method detection limits (MDLs) were in the range of 0.05-1.50 ng/L. The average recoveries of the 61 hormones across three spiked levels ranged from 62.3% to 125.2%, with relative standard deviations (RSDs, n=6) of 1.1%-10.5%. Using this method, we successfully detected 10 hormone components (cortisone, fluticasone propionate, ciclesonide, betamethasone dipropionate, clobetasone butyrate, diflucortolone valerate, halobetasol propionate, isoflupredone, difluprednate, and hydroxyprogesterone caproate) in various surface water and groundwater samples collected from the Taihu Basin region. The SPE-UPLC-MS/MS method presented in this paper is simple, highly sensitivity, and exceptionally accurate. Thus, it exhibits promising potential for tracing targeted hormone residues in water and will be of great value in monitoring and ensuring water safety. Finally, a regional analysis was conducted on the hormone levels in water, and suggestions were made for the targeted treatment of hormone residues in future sewage treatment processes.


Asunto(s)
Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Extracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/análisis , Hormonas/análisis
9.
Plant Cell ; 36(8): 2893-2907, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38735686

RESUMEN

Increasing grain yield is a major goal of breeders due to the rising global demand for food. We previously reported that the miR397-LACCASE (OsLAC) module regulates brassinosteroid (BR) signaling and grain yield in rice (Oryza sativa). However, the precise roles of laccase enzymes in the BR pathway remain unclear. Here, we report that OsLAC controls grain yield by preventing the turnover of TRANSTHYRETIN-LIKE (OsTTL), a negative regulator of BR signaling. Overexpressing OsTTL decreased BR sensitivity in rice, while loss-of-function of OsTTL led to enhanced BR signaling and increased grain yield. OsLAC directly binds to OsTTL and regulates its phosphorylation-mediated turnover. The phosphorylation site Ser226 of OsTTL is essential for its ubiquitination and degradation. Overexpressing the dephosphorylation-mimic form of OsTTL (OsTTLS226A) resulted in more severe defects than did overexpressing OsTTL. These findings provide insight into the role of an ancient laccase in BR signaling and suggest that the OsLAC-OsTTL module could serve as a target for improving grain yield.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lacasa , MicroARNs , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Oryza/enzimología , Lacasa/metabolismo , Lacasa/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , MicroARNs/genética , MicroARNs/metabolismo , Fosforilación , Grano Comestible/crecimiento & desarrollo , Grano Comestible/genética , Grano Comestible/metabolismo , Transducción de Señal , Plantas Modificadas Genéticamente , Brasinoesteroides/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-38806093

RESUMEN

BACKGROUND: Modern neuroimaging methods have revealed that autistic symptoms are associated with abnormalities in brain morphology, connectivity, and activity patterns. However, the changes in brain microstructure underlying the neurobiological and behavioral deficits of autism remain largely unknown. METHODS: we characterized the associated abnormalities in intracortical myelination pattern by constructing cortical T1-weighted/T2-weighted ratio maps. Voxel-wise comparisons of cortical myelination were conducted between 150 children with autism spectrum disorder (ASD) and 139 typically developing (TD) children. Group differences in cortical T1-weighted/T2-weighted ratio and gray matter volume were then examined for associations with autistic symptoms. A convolutional neural network (CNN) model was also constructed to examine the utility of these regional abnormalities in cortical myelination for ASD diagnosis. RESULTS: Compared to TD children, the ASD group exhibited widespread reductions in cortical myelination within regions related to default mode, salience, and executive control networks such as the inferior frontal gyrus, bilateral insula, left fusiform gyrus, bilateral hippocampus, right calcarine sulcus, bilateral precentral, and left posterior cingulate gyrus. Moreover, greater myelination deficits in most of these regions were associated with more severe autistic symptoms. In addition, children with ASD exhibited reduced myelination in regions with greater gray matter volume, including left insula, left cerebellum_4_5, left posterior cingulate gyrus, and right calcarine sulcus. Notably, the CNN model based on brain regions with abnormal myelination demonstrated high diagnostic efficacy for ASD. CONCLUSIONS: Our findings suggest that microstructural abnormalities in myelination contribute to autistic symptoms and so are potentially promising therapeutic targets as well as biomarkers for ASD diagnosis.


Asunto(s)
Trastorno del Espectro Autista , Imagen por Resonancia Magnética , Vaina de Mielina , Humanos , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/patología , Masculino , Niño , Femenino , Vaina de Mielina/patología , Imagen por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Neuroimagen/métodos , Adolescente
13.
J Magn Reson Imaging ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721820

RESUMEN

BACKGROUND: The angiographic features of moyamoya disease (MMD) and atherosclerosis-associated moyamoya vasculopathy (AS-MMV) are similar, but the etiology and clinical treatment strategies are different. Differentiating MMD from AS-MMV helps to choose the appropriate treatment. PURPOSE: To investigate the feasibility of a nomogram based on high-resolution vessel wall (HR-VWI) MRI features to differentiate MMD from AS-MMV. STUDY TYPE: Retrospective. SUBJECTS: One hundred and two patients with MMD (N = 52) or AS-MMV (N = 50) in the training cohort (9-72 years; 54 females) and 70 patients with MMD (N = 42) or AS-MMV (N = 28) in the validation cohort (7-69 years; 33 females). FIELD STRENGTH/SEQUENCE: 3-T, three-dimensional time-of-flight MR angiography (3D-TOF-MRA), spin echo high-resolution 3D T1-weighted imaging (3D-T1WI), 3D T2-weighted imaging (3D-T2WI), and contrast-enhanced 3D-T1WI. ASSESSMENT: Image assessment was performed by three neuroradiologists (with 10, 15, and 18 years of experience). Demographic characteristic and image features were evaluated and compared. Independent factors of MMD were screened to construct a nomogram model in the training cohort. The validation cohort was used to validated its generality. STATISTICAL TESTS: Interclass correlation coefficient (ICC), kappa, t-test, χ2 test, receiver operating characteristic (ROC) curve, area under the curve (AUC), calibration curve and concordance index (C-index). A P-value <0.05 was considered statistically significant. RESULTS: Significant differences were observed between MMD and AS-MMV in terms of age, vessel outer diameter, vessel wall thickening pattern, maximum thickness, dot sign, and anterior cerebral artery (ACA) involved. Age, outer diameter, dot sign, and ACA involved were independent factors. The C-index was 0.886 in the training cohort and 0.859 in the validation cohort. The ROC demonstrated high diagnostic efficacy with an AUC of 0.884 in the training cohort and 0.857 in the validation cohort. DATA CONCLUSION: A nomogram model based on age, vessel outer diameter, dot sign and ACA involved may effectively distinguish MMD from AS-MMV with good reliability and accuracy. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.

14.
15.
Inflammation ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625640

RESUMEN

Diabetic retinopathy (DR) is recognized as the most prevalent retinal degenerative disorder. Inflammatory response usually precedes microvascular alteration and is the primary factor of diabetic retinopathy. Activated microglia express many pro-inflammatory cytokines that exacerbate retina inflammation and disruption. In the present study, we found that MSCs alleviated blood-retina barrier (BRB) breakdown in diabetic rats, as evidenced by reduced retinal edema, decreased vascular leakage, and increased occludin expression. The MSC-treated retinal microglia exhibited reduced expression of M1-phenotype markers in the diabetic rats, including inducible nitric oxide synthase (iNOS), CD16, and pro-inflammatory cytokines. On the other hand, MSCs increased the expression of M2-phenotype markers, such as arginase-1 (Arg-1), CD206, and anti-inflammatory cytokines. HMGB1/TLR4 signaling pathway is activated in DR and inhibited after MSC treatment. Consistent with in vivo evidence, MSCs drove BV2 microglia toward M2 phenotype in vitro. Overexpression of HMGB1 in microglia reversed the effects of MSC treatment, suggesting HMGB1/TLR4 pathway is necessary for MSCs' regulatory effects on microglia polarization. Collectively, MSCs exert beneficial effects on DR by polarizing microglia from M1 toward M2 phenotype via inhibiting the HMGB1/TLR4 signaling pathway.

16.
Free Radic Biol Med ; 219: 76-87, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604315

RESUMEN

Diabetic retinopathy (DR) is a highly hazardous and widespread complication of diabetes mellitus (DM). The accumulated reactive oxygen species (ROS) play a central role in DR development. The aim of this research was to examine the impact and mechanisms of mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEV) on regulating ROS and retinal damage in DR. Intravitreal injection of sEV inhibited Cullin3 neddylation, stabilized Nrf2, decreased ROS, reduced retinal inflammation, suppressed Müller gliosis, and mitigated DR. Based on MSC-sEV miRNA sequencing, bioinformatics software, and dual-luciferase reporter assay, miR-143-3p was identified to be the key effector for MSC-sEV's role in regulating neural precursor cell expressed developmentally down-regulated 8 (NEDD8)-mediated neddylation. sEV were able to be internalized by Müller cells. Compared to advanced glycation end-products (AGEs)-induced Müller cells, sEV coculture decreased Cullin3 neddylation, activated Nrf2 signal pathway to combat ROS-induced inflammation. The barrier function of endothelial cells was impaired when endothelial cells were treated with the supernatant of AGEs-induced Müller cells, but was restored when treated with supernatant of AGEs-induced Müller cells cocultured with sEV. The protective effect of sEV was, however, compromised when miR-143-3p was inhibited in sEV. Moreover, the protective efficacy of sEV was diminished when NEDD8 was overexpressed in Müller cells. These findings showed MSC-sEV delivered miR-143-3p to inhibit Cullin3 neddylation, stabilizing Nrf2 to counteract ROS-induced inflammation and reducing vascular leakage. Our findings suggest that MSC-sEV may be a potential nanotherapeutic agent for DR, and that Cullin3 neddylation could be a new target for DR therapy.


Asunto(s)
Retinopatía Diabética , Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Proteína NEDD8 , Factor 2 Relacionado con NF-E2 , Especies Reactivas de Oxígeno , Animales , Humanos , Ratones , Proteínas Cullin/metabolismo , Proteínas Cullin/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/genética , Retinopatía Diabética/patología , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Productos Finales de Glicación Avanzada/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
17.
J Coll Physicians Surg Pak ; 34(4): 400-406, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38576280

RESUMEN

OBJECTIVE: To explore the value of intravoxel incoherent motion (IVIM) and dynamic contrast enhanced MRI (DCE-MRI) for predicting phenotypic subtypes and Nottingham prognostic index (NPI) of breast cancer. STUDY DESIGN: Descriptive study. Place and Duration of the Study: Department of Radiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China, from March 2020 to January 2022. METHODOLOGY: One hundred and forty-one breast cancer patients with preoperative IVIM and DCE imaging were collected. IVIM parameters of D, D*, f, and DCE-MRI parameters of Ktrans, Kep, and Ve were measured. Receiver operating characteristic curves were conducted to assess the diagnostic efficacies. Additionally, 40 patients collected from February 2022 to July 2022 were enrolled as validation cohort. RESULTS: The D value in HER2-enriched (HER2-E) was lower than that in non-HER-E, while D*, Ktrans, and Ve values were higher than that in non-HER-E (p < 0.001, 0.046, < 0.001, and < 0.001, respectively). D + Ktrans + Ve showed an optimal diagnostic efficiency (AUC = 0.868). Meanwhile, D* and f values of triple-negative breast cancer (TNBC) were higher than those of non-TNBC, and Ve value of TNBC was lower than that of non-TNBC (p = 0.013, 0.006, and < 0.001, respectively). D* + f + Ve showed the best prediction performance (AUC = 0.849). Additionally, D and Kep were independent predictors of NPI (p < 0.001, and 0.002, respectively). D + Kep showed a good diagnostic efficiency (AUC = 0.818). CONCLUSION: The combined IVIM and DCE-MRI model showed enhanced diagnostic efficiency in predicting phenotypic subtypes and NPI of breast cancer, and might thus be considered efficient in therapy decision-making for patients. KEY WORDS: Breast neoplasms, Intravoxel incoherent motion, Dynamic contrast enhanced magnetic resonance imaging, Phenotypic subtypes, Nottingham prognostic index.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Imagen de Difusión por Resonancia Magnética/métodos , Pronóstico , Medios de Contraste , Imagen por Resonancia Magnética/métodos
18.
Front Oncol ; 14: 1344150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505598

RESUMEN

Introduction: Gastric schwannoma is a rare benign tumor accounting for only 1-2% of alimentary tract mesenchymal tumors. Owing to their low incidence rate, most cases are misdiagnosed as gastrointestinal stromal tumors (GISTs), especially tumors with a diameter of less than 5 cm. Therefore, this study aimed to develop and validate a diagnostic nomogram based on computed tomography (CT) imaging features for the preoperative prediction of gastric schwannomas and GISTs (diameters = 2-5 cm). Methods: Gastric schwannomas in 47 patients and GISTs in 230 patients were confirmed by surgical pathology. Thirty-four patients with gastric schwannomas and 167 with GISTs admitted between June 2009 and August 2022 at Hospital 1 were retrospectively analyzed as the test and training sets, respectively. Seventy-six patients (13 with gastric schwannomas and 63 with GISTs) were included in the external validation set (June 2017 to September 2022 at Hospital 2). The independent factors for differentiating gastric schwannomas from GISTs were obtained by multivariate logistic regression analysis, and a corresponding nomogram model was established. The accuracy of the nomogram was evaluated using receiver operating characteristic and calibration curves. Results: Logistic regression analysis showed that the growth pattern (odds ratio [OR] 3.626; 95% confidence interval [CI] 1.105-11.900), absence of necrosis (OR 4.752; 95% CI 1.464-15.424), presence of tumor-associated lymph nodes (OR 23.978; 95% CI 6.499-88.466), the difference between CT values during the portal and arterial phases (OR 1.117; 95% CI 1.042-1.198), and the difference between CT values during the delayed and portal phases (OR 1.159; 95% CI 1.080-1.245) were independent factors in differentiating gastric schwannoma from GIST. The resulting individualized prediction nomogram showed good discrimination in the training (area under the curve [AUC], 0.937; 95% CI, 0.900-0.973) and validation (AUC, 0.921; 95% CI, 0.830-1.000) datasets. The calibration curve showed that the probability of gastric schwannomas predicted using the nomogram agreed well with the actual value. Conclusion: The proposed nomogram model based on CT imaging features can be used to differentiate gastric schwannoma from GIST before surgery.

19.
Exp Hematol Oncol ; 13(1): 18, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374003

RESUMEN

BACKGROUND: Mixed-lineage leukemia (MLL) fusion gene caused by chromosomal rearrangement is a dominant oncogenic driver in leukemia. Due to having diverse MLL rearrangements and complex characteristics, MLL leukemia treated by currently available strategies is frequently associated with a poor outcome. Therefore, there is an urgent need to identify novel therapeutic targets for hematological malignancies with MLL rearrangements. METHODS: qRT-PCR, western blot, and spearman correction analysis were used to validate the regulation of LAMP5-AS1 on LAMP5 expression. In vitro and in vivo experiments were conducted to assess the functional relevance of LAMP5-AS1 in MLL leukemia cell survival. We utilized chromatin isolation by RNA purification (ChIRP) assay, RNA pull-down assay, chromatin immunoprecipitation (ChIP), RNA fluorescence in situ hybridization (FISH), and immunofluorescence to elucidate the relationship among LAMP5-AS1, DOT1L, and the LAMP5 locus. Autophagy regulation by LAMP5-AS1 was evaluated through LC3B puncta, autolysosome observation via transmission electron microscopy (TEM), and mRFP-GFP-LC3 puncta in autophagic flux. RESULTS: The study shows the crucial role of LAMP5-AS1 in promoting MLL leukemia cell survival. LAMP5-AS1 acts as a novel autophagic suppressor, safeguarding MLL fusion proteins from autophagic degradation. Knocking down LAMP5-AS1 significantly induced apoptosis in MLL leukemia cell lines and primary cells and extended the survival of mice in vivo. Mechanistically, LAMP5-AS1 recruits the H3K79 histone methyltransferase DOT1L to LAMP5 locus, directly activating LAMP5 expression. Importantly, blockade of LAMP5-AS1-LAMP5 axis can represses MLL fusion proteins by enhancing their degradation. CONCLUSIONS: The findings underscore the significance of LAMP5-AS1 in MLL leukemia progression through the regulation of the autophagy pathway. Additionally, this study unveils the novel lncRNA-DOT1L-LAMP5 axis as promising therapeutic targets for degrading MLL fusion proteins.

20.
Stem Cells ; 42(1): 64-75, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37847598

RESUMEN

PURPOSE: This study aimed to investigate the effect of mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) on diabetic retinopathy (DR) and its underlying mechanism. METHODS: In vivo, MSC-sEVs were injected intravitreally into diabetic rats to determine the therapeutic efficacy. In vitro, MSC-sEVs with/without miR-22-3p inhibition were cocultured with advanced glycation end-products (AGEs)-induced microglia with/without NLRP3 overexpression to explore the molecular mechanism. RESULTS: In vivo, MSC-sEVs inhibited NLRP3 inflammasome activation, suppressed microglial activation, decreased inflammatory cytokines levels in the retina, and alleviated DR as evidenced by improved histological morphology and blood-retinal barrier function. Based on miRNA sequencing of MSC-sEVs, bioinformatic software, and dual-luciferase reporter assay, miR-22-3p stood out as the critical molecule for the role of MSC-sEVs in regulating NLRP3 inflammasome activation. Diabetic rats had lower level of miR-22-3p in their retina than those of control and sEV-treated rats. Confocal microscopy revealed that sEV could be internalized by microglia both in vivo and in vitro. In vitro, compared with sEV, the anti-inflammation effect of sEVmiR-22-3p(-) on AGEs-induced microglia was compromised, as they gave a lower suppression of NLRP3 inflammasome activation and inflammatory cytokines. In addition, NLRP3 overexpression in microglia damped the anti-inflammatory effect of sEV. CONCLUSION: These results indicated that MSC-sEVs alleviated DR via delivering miR-22-3p to inhibit NLRP3 inflammasome activation. Our findings indicate that MSC-sEVs might be a potential therapeutic method for DR.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Inflamasomas/genética , Retinopatía Diabética/genética , Retinopatía Diabética/terapia , MicroARNs/genética , Citocinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA