Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
Talanta ; 278: 126499, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38968652

RESUMEN

To enhance personalized diabetes management, there is a critical need for non-invasive wearable electrochemical sensors made from flexible materials to enable continuous monitoring of sweat glucose levels. The main challenge lies in developing glucose sensors with superior electrochemical characteristics and high adaptability. Herein, we present a wearable sensor for non-enzymatic electrochemical glucose analysis. The sensor was synthesized using hydrothermal and one-pot preparation methods, incorporating gold nanoparticles (AuNPs) functionalized onto aminated multi-walled carbon nanotubes (AMWCNTs) as an efficient catalyst, and crosslinked with carboxylated styrene butadiene rubber (XSBR) and PEDOT:PSS. The sensors were then integrated onto screen-printed electrodes (SPEs) to create flexible glucose sensors (XSBR-PEDOT:PSS-AMWCNTs/AuNPs/SPE). Operating under neutral conditions, the sensor exhibits a linear range of 50 µmol/L to 600 µmol/L, with a limit of detection limit of 3.2 µmol/L (S/N = 3), enabling the detection of minute glucose concentrations. The flexible glucose sensor maintains functionality after 500 repetitions of bending at a 180° angle, without significant degradation in performance. Furthermore, the sensor exhibits exceptional stability, repeatability, and resistance to interference. Importantly, we successfully monitored changes in sweat glucose levels by applying screen-printed electrodes to human skin, with results consistent with normal physiological blood glucose fluctuations. This study details the fabrication of a wearable sensor characterized by ease of manufacture, remarkable flexibility, high sensitivity, and adaptability for non-invasive blood glucose monitoring through non-enzymatic electrochemical analysis. Thus, this streamlined fabrication process presents a novel approach for non-invasive, real-time blood glucose level monitoring.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38954822

RESUMEN

BACKGROUND: Intestinal inflammation and compromised barrier function are critical factors in the pathogenesis of gastrointestinal disorders. This study aimed to investigate the role of miR-192-5p in modulating intestinal epithelial barrier (IEB) integrity and its association with autophagy. METHODS: A DSS-induced colitis model was used to assess the effects of miR-192-5p on intestinal inflammation. In vitro experiments involved cell culture and transient transfection techniques. Various assays, including dual-luciferase reporter gene assays, quantitative real-time PCR, western blotting, and measurements of transepithelial electrical resistance, were performed to evaluate changes in miR-192-5p expression, Rictor levels, and autophagy flux. Immunofluorescence staining, H&E staining, TEER measurements, and FITC-dextran analysis were also employed. RESULTS: Our findings revealed a reduced expression of miR-192-5p in inflamed intestinal tissues, correlating with impaired IEB function. Overexpression of miR-192-5p alleviated TNF-induced IEB dysfunction by targeting Rictor, resulting in enhanced autophagy flux in enterocytes (ECs). Moreover, the therapeutic potential of miR-192-5p was substantiated in colitis mice, wherein increased miR-192-5p expression ameliorated intestinal inflammatory injury by enhancing autophagy flux in ECs through the modulation of Rictor. CONCLUSION: Our study highlights the therapeutic potential of miR-192-5p in enteritis by demonstrating its role in regulating autophagy and preserving IEB function. Targeting the miR-192-5p/Rictor axis is a promising approach for mitigating gut inflammatory injury and improving barrier integrity in enteritis patients.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124745, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38955071

RESUMEN

H2S plays a crucial role in numerous physiological and pathological processes. In this project, a new fluorescent probe, SG-H2S, for the detection of H2S, was developed by introducing the recognition group 2,4-dinitrophenyl ether. The combination of rhodamine derivatives can produce both colorimetric reactions and fluorescence reactions. Compared with the current H2S probes, the main advantages of SG-H2S are its wide pH range (5-9), fast response (30 min), and high selectivity in competitive species (including biological mercaptan). The probe SG-H2S has low cytotoxicity and has been successfully applied to imaging in MCF-7 cells, HeLa cells, and BALB/c nude mice. We hope that SG-H2S will provide a vital method for the field of biology.

4.
Adv Sci (Weinh) ; : e2403461, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992955

RESUMEN

The precise mechanism underlying the therapeutic effects of dihydroartemisinin (DHA) in alleviating colitis remains incompletely understood. A strong correlation existed between the elevation of glial fibrillary acidic protein (GFAP)+/S100 calcium binding protein B (S100ß)+ enteric glial cells (EGCs) in inflamed colonic tissues and the disruption of the intestinal epithelial barrier (IEB) and gut vascular barrier (GVB) observed in chronic colitis. DHA demonstrated efficacy in restoring the functionality of the dual gut barrier while concurrently attenuating intestinal inflammation. Mechanistically, DHA inhibited the transformation of GFAP+ EGCs into GFAP+/S100ß+ EGCs while promoting the differentiation of GFAP+/S100ß+ EGCs back into GFAP+ EGCs. Furthermore, DHA induced apoptosis in GFAP+/S100ß+ EGCs by inducing cell cycle arrest at the G0/G1 phase. The initial mechanism is further validated that DHA regulates EGC heterogeneity by improving dysbiosis in colitis. These findings underscore the multifaceted therapeutic potential of DHA in ameliorating colitis by improving dysbiosis, modulating EGC heterogeneity, and preserving gut barrier integrity, thus offering promising avenues for novel therapeutic strategies for inflammatory bowel diseases.

5.
Langmuir ; 40(28): 14652-14662, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38949915

RESUMEN

In this paper, CH4, C2H2, H2, and CO adsorbed on intrinsic MoTe2 monolayer and transition metal atom (Ta, V)-doped MoTe2 monolayer have been investigated with density functional theory based on first-principles study. The adsorption energy, geometries, band structures, and density of states of four gases (CH4, C2H2, H2, and CO) adsorbed on the MoTe2 and doped MoTe2 surfaces were analyzed. The results shown that the gas adsorption performance of transition metal atom (Ta, V)-doped MoTe2 monolayers is more superior than that of intrinsic MoTe2, and the adsorption energy and charge transfer of the adsorbed gases on the TM-MoTe2 monolayer are significantly increased in comparison with both sides. Among them, Ta-MoTe2 has the largest Eads value in the adsorbed CO system with a very small adsorption distance, as well as a more suitable recovery time of CO at room temperature, so Ta-MoTe2 can be a candidate material for CO detection. New atoms were introduced during the doping process, which increased the carrier density and carrier mobility of the material, thus improving the charge transfer at the surface of the material. which provides a direction for the gas-sensitive properties of metal Ta-modified MoTe2 materials.

6.
Opt Lett ; 49(14): 3990-3993, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008759

RESUMEN

Atomically thin transition metal dichalcogenides (TMDS) offer a promising route to the scaling down of optoelectronic devices to the ultimate thickness limit. But the weak light-matter interaction caused by their atomically thin nature makes them inevitably rely on external photonic structures to enhance optical absorption. Here, we report chiral absorption enhancement in atomically thin tungsten diselenide (WSe2) using chiral resonances in photonic crystal (PhC) nanostructures patterned directly in WSe2 itself. We show that the quality factors (Q factors) of the resonances grow exponentially as the PhC thickness approaches atomic limit. As such, the strong interaction of high Q factor photonic resonance with the coexisting exciton resonance in WSe2 results into self-coupled exciton-polaritons. By balancing the light coupling and absorption rates, the incident light can critically couple to chiral resonances in WSe2 PhC exciton-polaritons, leading to the theoretically limited 50% optical absorptance with over 84% circular dichroism (CD).

7.
Front Cell Dev Biol ; 12: 1401917, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887522

RESUMEN

Osseointegration commences with foreign body inflammation upon implant placement, where macrophages play a crucial role in the immune response. Subsequently, during the intermediate and late stages of osseointegration, mesenchymal stem cells (MSCs) migrate and initiate their osteogenic functions, while macrophages support MSCs in osteogenesis. The utilization of ferroelectric P(VDF-TrFE) covered ITO planar microelectrodes facilitated the simulation of various surface charge to investigate their effects on MSCs' osteogenic differentiation and macrophage polarization and the results indicated a parabolic increase in the promotional effect of both with the rise in piezoelectric coefficient. Furthermore, the surface charge with a piezoelectric coefficient of -18 exhibited the strongest influence on the promotion of M1 polarization of macrophages and the promotion of MSCs' osteogenic differentiation. The impact of macrophage polarization and MSC osteogenesis following the interaction of macrophages affected by surface charge and MSC was ultimately investigated. It was observed that macrophages affected by the surface charge of -18 piezoelectric coefficient still exerted the most profound induced osteogenic effect, validating the essential role of M1-type macrophages in the osteogenic differentiation of MSCs.

8.
J Nutr Biochem ; 131: 109687, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866191

RESUMEN

Glucose metabolic disorders, prevalent in numerous metabolic diseases, have become a pressing global public health concern. Artemisinin (ART) and its derivatives, including artesunate (ARTs) and artemether (ARTe), have shown potential as metabolic regulators. However, the specific effects of ART and its derivatives on glucose metabolism under varying nutritional conditions and the associated molecular mechanisms remain largely unexplored. In this study, we examined the impact of ART, ARTs, and ARTe on glucose homeostasis using a mouse model subjected to different dietary regimens. Our findings revealed that ART, ARTs, and ARTe increased blood glucose levels in mice on a normal-chow diet (ND) while mitigating glucose imbalances in high-fat diet (HFD) mice. Notably, treatment with ART, ARTs, and ARTe had contrasting effects on in vivo insulin signaling, impairing it in ND mice and enhancing it in HFD mice. Moreover, the composition of gut microbiota underwent significant alterations following administration of ART and its derivatives. In ND mice, these treatments reduced the populations of bacteria beneficial for improving glucose homeostasis, including Parasutterella, Alloprevotella, Bifidobacterium, Ileibacterium, and Alistipes. In HFD mice, there was an increase in the abundance of beneficial bacteria (Alistipes, Akkermanisia) and a decrease in bacteria known to negatively impact glucose metabolism (Coprobacillus, Helicobacter, Mucispirillum, Enterorhabdus). Altogether, ART, ARTs, and ARTe exhibited distinct effects on the regulation of glucose metabolism, depending on the nutritional context, and these effects were closely associated with modifications in gut microbiota composition.

9.
Int J Surg ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874470

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is a common complication of acute and severe neurosurgery. Remodeling of N6-methyladenosine (m6A) stabilization may be an attractive treatment option for neurological dysfunction after TBI. In the present study, we explored the epigenetic methylation of RNA-mediated NLRP3 inflammasome activation after TBI. METHODS: Neurological dysfunction, histopathology, and associated molecules were examined in conditional knockout (CKO) WTAP[flox/flox, Camk2a-cre], WTAPflox/flox, and pAAV-U6-shRNA-YTHDF1-transfected mice. Primary neurons were used in vitro to further explore the molecular mechanisms of action of WTAP/YTHDF1 following neural damage. RESULTS: We found that WTAP and m6A levels were upregulated at an early stage after TBI, and conditional deletion of WTAP in neurons did not affect neurological function but promoted functional recovery after TBI. Conditional deletion of WTAP in neurons suppressed neuroinflammation at the TBI early phase: WTAP could directly act on NLRP3 mRNA, regulate NLRP3 mRNA m6A level, and promote NLRP3 expression after neuronal injury. Further investigation found that YTH domain of YTHDF1 could directly bind to NLRP3 mRNA and regulate NLRP3 protein expression. YTHDF1 mutation or silencing improved neuronal injury, inhibited Caspase-1 activation, and decreased IL-1ß levels. This effect was mediated via suppression of NLRP3 protein translation, which also reversed the stimulative effect of WTAP overexpression on NLRP3 expression and inflammation. CONCLUSION: Our results indicate that WTAP participates in neuronal damage by protein translation of NLRP3 in an m6A-YTHDF1-dependent manner after TBI and that WTAP/m6A/YTHDF1 downregulation therapeutics is a viable and promising approach for preserving neuronal function after TBI, which can provide support for targeted drug development.

10.
Chem Sci ; 15(21): 8249, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38817575

RESUMEN

[This corrects the article DOI: 10.1039/D4SC00735B.].

11.
Chem Sci ; 15(20): 7659-7666, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38779171

RESUMEN

The development of high-quality organic scintillators encounters challenges primarily associated with the weak X-ray absorption ability resulting from the presence of low atomic number elements. An effective strategy involves the incorporation of halogen-containing molecules into the system through co-crystal engineering. Herein, we synthesized a highly fluorescent dye, 2,5-di(4-pyridyl)thiazolo[5,4-d]thiazole (Py2TTz), with a fluorescence quantum yield of 12.09%. Subsequently, Py2TTz was co-crystallized with 1,4-diiodotetrafluorobenzene (I2F4B) and 1,3,5-trifluoro-2,4,6-triiodobenzene (I3F3B) obtaining Py2TTz-I2F4 and Py2TTz-I3F3. Among them, Py2TTz-I2F4 exhibited exceptional scintillation properties, including an ultrafast decay time (1.426 ns), a significant radiation luminescence intensity (146% higher than Bi3Ge4O12), and a low detection limit (70.49 nGy s-1), equivalent to 1/78th of the detection limit for medical applications (5.5 µGy s-1). This outstanding scintillation performance can be attributed to the formation of halogen-bonding between I2F4B and Py2TTz. Theoretical calculations and single-crystal structures demonstrate the formation of halogen-bond-induced rather than π-π-induced charge-transfer cocrystals, which not only enhances the X-ray absorption ability and material conductivity under X-ray exposure, but also constrains molecular vibration and rotation, and thereby reducing non-radiative transition rate and sharply increasing its fluorescence quantum yields. Based on this, the flexible X-ray film prepared based on Py2TTz-I2F4 achieved an ultrahigh spatial resolution of 26.8 lp per mm, underscoring the superiority of this strategy in developing high-performance organic scintillators.

12.
J Neuroinflammation ; 21(1): 125, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730470

RESUMEN

BACKGROUND: Understanding the molecular mechanisms of Alzheimer's disease (AD) has important clinical implications for guiding therapy. Impaired amyloid beta (Aß) clearance is critical in the pathogenesis of sporadic AD, and blood monocytes play an important role in Aß clearance in the periphery. However, the mechanism underlying the defective phagocytosis of Aß by monocytes in AD remains unclear. METHODS: Initially, we collected whole blood samples from sporadic AD patients and isolated the monocytes for RNA sequencing analysis. By establishing APP/PS1 transgenic model mice with monocyte-specific cystatin F overexpression, we assessed the influence of monocyte-derived cystatin F on AD development. We further used a nondenaturing gel to identify the structure of the secreted cystatin F in plasma. Flow cytometry, enzyme-linked immunosorbent assays and laser scanning confocal microscopy were used to analyse the internalization of Aß by monocytes. Pull down assays, bimolecular fluorescence complementation assays and total internal reflection fluorescence microscopy were used to determine the interactions and potential interactional amino acids between the cystatin F protein and Aß. Finally, the cystatin F protein was purified and injected via the tail vein into 5XFAD mice to assess AD pathology. RESULTS: Our results demonstrated that the expression of the cystatin F protein was specifically increased in the monocytes of AD patients. Monocyte-derived cystatin F increased Aß deposition and exacerbated cognitive deficits in APP/PS1 mice. Furthermore, secreted cystatin F in the plasma of AD patients has a dimeric structure that is closely related to clinical signs of AD. Moreover, we noted that the cystatin F dimer blocks the phagocytosis of Aß by monocytes. Mechanistically, the cystatin F dimer physically interacts with Aß to inhibit its recognition and internalization by monocytes through certain amino acid interactions between the cystatin F dimer and Aß. We found that high levels of the cystatin F dimer protein in blood contributed to amyloid pathology and cognitive deficits as a risk factor in 5XFAD mice. CONCLUSIONS: Our findings highlight that the cystatin F dimer plays a crucial role in regulating Aß metabolism via its peripheral clearance pathway, providing us with a potential biomarker for diagnosis and potential target for therapeutic intervention.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones Transgénicos , Monocitos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Monocitos/metabolismo , Ratones , Humanos , Péptidos beta-Amiloides/metabolismo , Masculino , Femenino , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Anciano , Cistatinas/metabolismo , Cistatinas/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Anciano de 80 o más Años , Ratones Endogámicos C57BL
13.
Biosens Bioelectron ; 260: 116435, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38820724

RESUMEN

Electrochemical detection of miRNA biomarkers in complex physiological samples holds great promise for accurate evaluation of tumor burden in the perioperative period, yet limited by reproducibility and bias issues. Here, nanosensors installed with hybrid probes that responsively release catalytic DNAzymes (G-quadruplexes/hemin) were developed to solve the fidelity challenge in an immobilization-free detection. miRNA targets triggered toehold-mediated strand displacement reactions on the sensor surface and resulted in amplified shedding of DNAzymes. Subsequently, the interference background was removed by Fe3O4 core-facilitated magnetic separation. Binding aptamers of the electrochemical reporter (dopamine) were tethered closely to the catalytic units for boosting H2O2-mediated oxidation through proximity catalysis. The one-to-many conversion by dual amplification from biological-chemical catalysis facilitated sufficient homogeneous sensing signals on electrodes. Thereby, the nanosensor exhibited a low detection limit (2.08 fM), and high reproducibility (relative standard deviation of 1.99%). Most importantly, smaller variations (RSD of 0.51-1.04%) of quantified miRNAs were observed for detection from cell lysates, multiplexed detection from unprocessed serum, and successful discrimination of small upregulations in lysates of tumor tissue samples. The nanosensor showed superior diagnostic performance with an area under curve (AUC) of 0.97 and 94% accuracy in classifying breast cancer patients and healthy donors. These findings demonstrated the synergy of signal amplification and interference removal in achieving high-fidelity miRNA detection for practical clinical applications.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Técnicas Electroquímicas , Límite de Detección , MicroARNs , Humanos , MicroARNs/aislamiento & purificación , Técnicas Electroquímicas/métodos , ADN Catalítico/química , Catálisis , G-Cuádruplex , Neoplasias de la Mama , Peróxido de Hidrógeno/química , Aptámeros de Nucleótidos/química , Femenino , Hemina/química , Reproducibilidad de los Resultados , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética
14.
J Cereb Blood Flow Metab ; : 271678X241248907, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661094

RESUMEN

Blood-brain barrier (BBB) disruption is increasingly recognized as an early contributor to the pathophysiology of cerebral ischemia/reperfusion (I/R) injury, and is also a key event in triggering secondary damage to the central nervous system. Recently, long non-coding RNA (lncRNA) have been found to be associated with ischemic stroke. However, the roles of lncRNA in BBB homeostasis remain largely unknown. Here, we report that long intergenic non-coding RNA-p21 (lincRNA-p21) was the most significantly down-regulated lncRNA in human brain microvascular endothelial cells (HBMECs) after oxygen and glucose deprivation/reoxygenation (OGD/R) treatment among candidate lncRNA, which were both sensitive to hypoxia and involved in atherosclerosis. Exogenous brain-endothelium-specific overexpression of lincRNA-p21 could alleviate BBB disruption, diminish infarction volume and attenuate motor function deficits in middle cerebral artery occlusion/reperfusion (MCAO/R) mice. Further results showed that lincRNA-p21 was critical to maintain BBB integrity by inhibiting the degradation of junction proteins under MCAO/R and OGD/R conditions. Specifically, lincRNA-p21 could inhibit autophagy-dependent degradation of occludin by activating PI3K/AKT/mTOR signaling pathway. Besides, lincRNA-p21 could inhibit VE-cadherin degradation by binding with miR-101-3p. Together, we identify that lincRNA-p21 is critical for BBB integrity maintenance, and endothelial lincRNA-p21 overexpression could alleviate cerebral I/R injury in mice, pointing to a potential strategy to treat cerebral I/R injury.

16.
Front Cell Infect Microbiol ; 14: 1308742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558852

RESUMEN

Background: Growing evidence has shown that gut microbiome composition is associated with Biliary tract cancer (BTC), but the causality remains unknown. This study aimed to explore the causal relationship between gut microbiota and BTC, conduct an appraisal of the gut microbiome's utility in facilitating the early diagnosis of BTC. Methods: We acquired the summary data for Genome-wide Association Studies (GWAS) pertaining to BTC (418 cases and 159,201 controls) from the Biobank Japan (BBJ) database. Additionally, the GWAS summary data relevant to gut microbiota (N = 18,340) were sourced from the MiBioGen consortium. The primary methodology employed for the analysis consisted of Inverse Variance Weighting (IVW). Evaluations for sensitivity were carried out through the utilization of multiple statistical techniques, encompassing Cochrane's Q test, the MR-Egger intercept evaluation, the global test of MR-PRESSO, and a leave-one-out methodological analysis. Ultimately, a reverse Mendelian Randomization analysis was conducted to assess the potential for reciprocal causality. Results: The outcomes derived from IVW substantiated that the presence of Family Streptococcaceae (OR = 0.44, P = 0.034), Family Veillonellaceae (OR = 0.46, P = 0.018), and Genus Dorea (OR = 0.29, P = 0.041) exerted a protective influence against BTC. Conversely, Class Lentisphaeria (OR = 2.21, P = 0.017), Genus Lachnospiraceae FCS020 Group (OR = 2.30, P = 0.013), and Order Victivallales (OR = 2.21, P = 0.017) were associated with an adverse impact. To assess any reverse causal effect, we used BTC as the exposure and the gut microbiota as the outcome, and this analysis revealed associations between BTC and five different types of gut microbiota. The sensitivity analysis disclosed an absence of empirical indicators for either heterogeneity or pleiotropy. Conclusion: This investigation represents the inaugural identification of indicative data supporting either beneficial or detrimental causal relationships between gut microbiota and the risk of BTC, as determined through the utilization of MR methodologies. These outcomes could hold significance for the formulation of individualized therapeutic strategies aimed at BTC prevention and survival enhancement.


Asunto(s)
Neoplasias del Sistema Biliar , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Neoplasias del Sistema Biliar/genética , Causalidad
17.
Small ; : e2311630, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470212

RESUMEN

The floating gate devices, as a kind of nonvolatile memory, obtain great application potential in logic-in-memory chips. The 2D materials have been greatly studied due to atomically flat surfaces, higher carrier mobility, and excellent photoelectrical response. The 2D ReS2 flake is an excellent candidate for channel materials due to thickness-independent direct bandgap and outstanding optoelectronic response. In this paper, the floating gate devices are prepared with the ReS2 /h-BN/Gr heterojunction. It obtains superior nonvolatile electrical memory characteristics, including a higher memory window ratio (81.82%), tiny writing/erasing voltage (±8 V/2 ms), long retention (>1000 s), and stable endurance (>1000 times) as well as multiple memory states. Meanwhile, electrical writing and optical erasing are achieved by applying electrical and optical pulses, and multilevel storage can easily be achieved by regulating light pulse parameters. Finally, due to the ideal long-time potentiation/depression synaptic weights regulated by light pulses and electrical pulses, the convolutional neural network (CNN) constructed by ReS2 /h-BN/Gr floating gate devices can achieve image recognition with an accuracy of up to 98.15% for MNIST dataset and 91.24% for Fashion-MNIST dataset. The research work adds a powerful option for 2D materials floating gate devices to apply to logic-in-memory chips and neuromorphic computing.

18.
Aging (Albany NY) ; 16(6): 5711-5739, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38535988

RESUMEN

BACKGROUND: Observational studies have previously shown a possible link between fatty acids and aging-related diseases, raising questions about its health implications. However, the causal relationship between the two remains uncertain. METHODS: Univariable and multivariable Mendelian randomization (MR) was used to analyze the relationship between five types of fatty acids-polyunsaturated fatty acid (PUFA), monounsaturated fatty acid (MUFA), saturated fatty acid (SFA), Omega-6 fatty acid (Omega-6 FA), and Omega-3 fatty acid (Omega-3 FA) and three markers of aging: telomere length (TL), frailty index (FI), and facial aging (FclAg). The primary approach for Mendelian randomization (MR) analysis involved utilizing the inverse variance weighted (IVW) method, with additional supplementary methods employed. RESULTS: Univariate MR analysis revealed that MUFA, PUFA, SFA, and Omega-6 fatty acids were positively associated with TL (MUFA OR: 1.019, 95% CI: 1.006-1.033; PUFA OR: 1.014, 95% CI: 1.002-1.026; SFA OR: 1.016, 95% CI: 1.002-1.031; Omega-6 FAs OR=1.031, 95% CI: 1.006-1.058). PUFA was also associated with a higher FI (OR: 1.033, 95% CI: 1.009-1.057). In multivariate MR analysis, after adjusting for mutual influences among the five fatty acids, MUFA and PUFA were positively independently associated with TL (MUFA OR: 1.1508, 95% CI = 1.0724-1.2350; PUFA OR: 1.1670, 95% CI = 1.0497-1.2973, while SFA was negatively correlated (OR: 0.8005, 95% CI: 0.7045-0.9096). CONCLUSIONS: Our research presents compelling evidence of a causal association between certain fatty acids and indicators of the aging process. In particular, MUFA and PUFA may play a role in slowing down the aging process, while SFAs may contribute to accelerated aging. These findings could have significant implications for dietary recommendations aimed at promoting healthy aging.


Asunto(s)
Ácidos Grasos Omega-3 , Ácidos Grasos , Grasas de la Dieta , Análisis de la Aleatorización Mendeliana , Ácidos Grasos Insaturados , Ácidos Grasos Monoinsaturados
19.
Front Immunol ; 15: 1327503, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449873

RESUMEN

Background: Numerous observational studies have identified a linkage between the gut microbiota and gastroesophageal reflux disease (GERD). However, a clear causative association between the gut microbiota and GERD has yet to be definitively ascertained, given the presence of confounding variables. Methods: The genome-wide association study (GWAS) pertaining to the microbiome, conducted by the MiBioGen consortium and comprising 18,340 samples from 24 population-based cohorts, served as the exposure dataset. Summary-level data for GERD were obtained from a recent publicly available genome-wide association involving 78 707 GERD cases and 288 734 controls of European descent. The inverse variance-weighted (IVW) method was performed as a primary analysis, the other four methods were used as supporting analyses. Furthermore, sensitivity analyses encompassing Cochran's Q statistics, MR-Egger intercept, MR-PRESSO global test, and leave-one-out methodology were carried out to identify potential heterogeneity and horizontal pleiotropy. Ultimately, a reverse MR assessment was conducted to investigate the potential for reverse causation. Results: The IVW method's findings suggested protective roles against GERD for the Family Clostridiales Vadin BB60 group (P = 0.027), Genus Lachnospiraceae UCG004 (P = 0.026), Genus Methanobrevibacter (P = 0.026), and Phylum Actinobacteria (P = 0.019). In contrast, Class Mollicutes (P = 0.037), Genus Anaerostipes (P = 0.049), and Phylum Tenericutes (P = 0.024) emerged as potential GERD risk factors. In assessing reverse causation with GERD as the exposure and gut microbiota as the outcome, the findings indicate that GERD leads to dysbiosis in 13 distinct gut microbiota classes. The MR results' reliability was confirmed by thorough assessments of heterogeneity and pleiotropy. Conclusions: For the first time, the MR analysis indicates a genetic link between gut microbiota abundance changes and GERD risk. This not only substantiates the potential of intestinal microecological therapy for GERD, but also establishes a basis for advanced research into the role of intestinal microbiota in the etiology of GERD.


Asunto(s)
Reflujo Gastroesofágico , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Reproducibilidad de los Resultados , Reflujo Gastroesofágico/genética , Clostridiales
20.
Pak J Med Sci ; 40(4): 572-576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544999

RESUMEN

Objective: To explore the effects of serum glycated serum protein (GSP), homocysteine (Hcy) and cystatin-C (Cys-C) levels on pregnancy outcomes in patients with gestational diabetes mellitus (GDM). Methods: Retrospective selection of 247 pregnant women who underwent normal prenatal examinations in The Yan'an People's Hospital from January 2020 to May 2022 were included in this retrospective study. Among them, 119 were pregnant women with diabetes (GDM-group) and 128 were pregnant women with normal blood glucose (Normal-group). The levels of serum GSP, HCY, CYS-C, and incidence of adverse pregnancy outcomes were compared between the two groups. The clinical value of levels of serum GSP, Hcy, and Cys-C in predicting adverse pregnancy outcomes were analyzed. Results: Compared with the Normal-group, the overall incidence of adverse pregnancy outcomes, serum GSP, Hcy, and Cys-C levels in the GDM-group were significantly higher (p<0.05). Logistic regression analysis showed that the levels of GSP, Hcy, and Cys-C were independent risk factors for adverse pregnancy outcomes in the GDM-group (p<0.05). Receiver operating characteristic (ROC) curve showed that the area under the curve (AUC) for diagnosing adverse pregnancy outcomes in pregnant women with GDM using serum GSP, Hcy, and CysC levels alone were 0.817, 0.843, and 0.775, respectively. The AUC of the three indicators combined was 0.921, indicating that this combination has a good predictive value for diagnosing adverse outcomes in GDM-complicated pregnancies. Conclusions: GDM is associated with a high risk of adverse pregnancy outcomes. Levels of serum GSP, Hcy, and Cys-C are higher in patients with GDM. The higher the levels of GSP, Hcy, and Cys-C, the greater the risk of adverse pregnancy outcomes. Combining these three indicators can effectively predict maternal pregnancy outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA