RESUMEN
In this study, carbon-quantum-dot (CQD)-decorated TiO2 was prepared using an ultrasonic doping method and applied in the photocatalytic degradation of naphthalene under sunlight irradiation. The CQDs were synthesized from a typical macroalgae via diluted sulfuric acid pretreatment and hydrothermal synthesis using an optimal design, i.e., 3 wt% and 200 °C, respectively. The CQD/TiO2 composite remarkably enhanced the photocatalytic activity. The degradation of naphthalene under a visible light environment indicated that there is a synergistic mechanism between the CQDs and TiO2, in which the generation of reactive oxygen species is significantly triggered; in addition, the N that originated from the macroalgae accelerated the photocatalytic efficiency. Kinetic analysis showed that the photocatalytic behavior of the CQD/TiO2 composite followed a pseudo-first-order equation. Consequently, our combined experimental approach not only provides a facile pretreatment process for bio-CQDs synthesis, but also delivers a suitable TiO2 photocatalyst for the visible environment along with critical insights into the development of harmful macroalgae resources.
RESUMEN
The construction of super large section (SLS) shallow buried tunnels involves challenges related to their large span, high flat rate, and complex construction process. Selecting an appropriate excavation method is crucial for ensuring stability, controlling costs, and managing the construction timeline. This study focuses on the selection of excavation methods and the mechanical responses of SLS tunnels in different types of surrounding rock. The research is based on the Yangjiashan tunnel project in Zhejiang Province, China, which is a four-line highway tunnel with a span of 21.3 m. Three sequential excavation methods were proposed and simulated using the three-dimensional finite difference method: the "upper first and lower later" side drift (SD) method, the central diaphragm method, and the top heading and bench (HB) method. The mechanical response characteristics of tunnel construction under these methods were investigated, including rock deformation, rock pressure, and the internal forces acting on the primary support. By comparing the performance of the three construction methods in rock masses of Grades III to V, the study aimed to determine the optimal construction method for SLS tunnels considering factors such as safety, cost, and schedule. Field tests were conducted to evaluate the effectiveness of the optimized construction scheme. The results of the field monitoring indicated that the "upper first and lower later" SD method in Grade V rock mass and the HB method in Grade III to IV rock mass are feasible and cost-effective under certain conditions. The research findings provide valuable insights for the design and construction of SLS tunnels in complex conditions, serving as a reference for engineers and project managers.
RESUMEN
Aggressive driving behaviors due to drivers' underestimation of risks are one of the major causes of traffic accidents. Due to the complexity of factors influencing risk perception, the mechanism of risk underestimation remains unclear. In this study, the theory of planned behavior (TPB) was extended by adding a new variable, namely drivers' normlessness, forming an extended TPB (ETPB) framework to analyze the factors influencing risk underestimation and the extent of their influence. A total of 376 drivers' perceived characteristics of risk underestimation were collected through an online survey, and a structural equation model was applied to investigate the effects of normlessness, behavioral attitudes, subjective norm, and perceived behavioral control on the tendency to underestimate the risk. The results showed that the ETPB model can explain the variance in the underestimation risk behavior by 69%; perceptual behavior control, attitude, and subjective norm (in descending order) had significant positive effects on driver's tendency to underestimate risk; the normlessness variable can directly promote attitude and underestimated risk behavior; drivers with low annual mileage, complete insurance coverage, and no prior accident experience were more likely to underestimate driving risk. The study contributes to understanding of risk perception characteristics and provide theoretical basis for reducing underestimated risk behavior.