Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(7): 494, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987564

RESUMEN

Ewing's sarcoma (ES) represents a rare yet exceedingly aggressive neoplasm that poses a significant health risk to the pediatric and adolescent population. The clinical outcomes for individuals with relapsed or refractory ES are notably adverse, primarily attributed to the constrained therapeutic alternatives available. Despite significant advancements in the field, molecular pathology-driven therapeutic strategies have yet to achieve a definitive reduction in the mortality rates associated with ES. Consequently, there exists an imperative need to discover innovative therapeutic targets to effectively combat ES. To reveal the mechanism of the SETD8 (also known as lysine methyltransferase 5A) inhibitor UNC0379, cell death manners were analyzed with different inhibitors. The contributions of SETD8 to the processes of apoptosis and ferroptosis in ES cells were evaluated employing the histone methyltransferase inhibitor UNC0379 in conjunction with RNA interference techniques. The molecular regulatory mechanisms of SETD8 in ES were examined through the application of RNA sequencing (RNA-seq) and mass spectrometry-based proteomic analysis. Moreover, nude mouse xenograft models were established to explore the role of SETD8 in ES in vivo. SETD8, a sole nucleosome-specific methyltransferase that catalyzes mono-methylation of histone H4 at lysine 20 (H4K20me1), was found to be upregulated in ES, and its overexpression was associated with dismal outcomes of patients. SETD8 knockdown dramatically induced the apoptosis and ferroptosis of ES cells in vitro and suppressed tumorigenesis in vivo. Mechanistic investigations revealed that SETD8 facilitated the nuclear translocation of YBX1 through post-transcriptional regulatory mechanisms, which subsequently culminated in the transcriptional upregulation of RAC3. In summary, SETD8 inhibits the apoptosis and ferroptosis of ES cells through the YBX1/RAC3 axis, which provides new insights into the mechanism of tumorigenesis of ES. SETD8 may be a potential target for clinical intervention in ES patients.


Asunto(s)
Apoptosis , Ferroptosis , N-Metiltransferasa de Histona-Lisina , Ratones Desnudos , Sarcoma de Ewing , Humanos , Ferroptosis/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Animales , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Sarcoma de Ewing/genética , Ratones , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína 1 de Unión a la Caja Y
2.
Toxicol Appl Pharmacol ; 485: 116916, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537874

RESUMEN

This study aims to explore the impact and underlying mechanism of sulforaphane (SFN) intervention on the migration and invasion of lung adenocarcinoma induced by 7, 8-dihydroxy-9, 10-epoxy-benzo (a) pyrene (BPDE). Human lung adenocarcinoma A549 cells were exposed to varying concentrations of BPDE (0.25, 0.50, and 1.00 µM) and subsequently treated with 5 µM SFN. Cell viability was determined using CCK8 assay, while migration and invasion were assessed using Transwell assays. Lentivirus transfection was employed to establish NLRP12 overexpressing A549 cells. ELISA was utilized to quantify IL-33, CXCL12, and CXCL13 levels in the supernatant, while quantitative real-time PCR (qRT-PCR) and Western Blot were used to analyze the expression of NLRP12 and key factors associated with canonical and non-canonical NF-κB pathways. Results indicated an increase in migratory and invasive capabilities, concurrent with heightened expression of IL-33, CXCL12, CXCL13, and factors associated with both canonical and non-canonical NF-κB pathways. Moreover, mRNA and protein levels of NLRP12 were decreased in BPDE-stimulated A549 cells. Subsequent SFN intervention attenuated BPDE-induced migration and invasion of A549 cells. Lentivirus-mediated NLRP12 overexpression not only reversed the observed phenotype in BPDE-induced cells but also led to a reduction in the expression of critical factors associated with both canonical and non-canonical NF-κB pathways. Collectively, we found that SFN could inhibit BPDE-induced migration and invasion of A549 cells by upregulating NLRP12, thereby influencing both canonical and non-canonical NF-κB pathways.


Asunto(s)
Adenocarcinoma del Pulmón , Movimiento Celular , Isotiocianatos , Neoplasias Pulmonares , Invasividad Neoplásica , Sulfóxidos , Humanos , Isotiocianatos/farmacología , Sulfóxidos/farmacología , Movimiento Celular/efectos de los fármacos , Células A549 , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/toxicidad , Anticarcinógenos/farmacología , FN-kappa B/metabolismo , Supervivencia Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
3.
Cell Death Dis ; 15(1): 99, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287009

RESUMEN

Ewing's sarcoma (ES) is a rare and highly aggressive malignant tumor arising from bone and soft tissue. Suffering from intractable or recurrent diseases, the patients' therapy options are very limited. It is extremely urgent to identify novel potential therapeutic targets for ES and put them into use in clinical settings. In the present study, high-throughput screening of a small molecular pharmacy library was performed. The killing effect of the Aurora kinase A (AURKA) inhibitor TCS7010 in ES cells was identified, and AURKA was selected as the research object for further study. Disparate suppressants were adopted to study the cell death manner of TCS7010. TCS7010 and RNA silencing were used to evaluate the functions of AURKA in the apoptosis and ferroptosis of ES cells. Co-immunoprecipitation assay was used to investigate the correlation of AURKA and nucleophosmin1 (NPM1) in ES. Nude-mice transplanted tumor model was used for investigating the role of AURKA in ES in vivo. Investigations into the protein activities of AURKA were conducted using ES cell lines and xenograft models. AURKA was found to be prominently upregulated in ES. The AURKA expression level was remarkably connected to ES patients' shorter overall survival (OS) and event-free survival (EFS). Furthermore, AURKA inhibition markedly induced the apoptosis and ferroptosis of ES cells and attenuated tumorigenesis in vivo. On the part of potential mechanisms, it was found that AURKA inhibition triggered the apoptosis and ferroptosis of ES cells through the NPM1/Yes1 associated transcriptional regulator (YAP1) axis, which provides new insights into the tumorigenesis of ES. AURKA may be a prospective target for clinical intervention in ES patients.


Asunto(s)
Ferroptosis , Sarcoma de Ewing , Animales , Humanos , Ratones , Apoptosis/genética , Aurora Quinasa A/metabolismo , Carcinogénesis/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica , Ferroptosis/genética , Proteínas Nucleares/uso terapéutico , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología
4.
ACS Omega ; 9(2): 2432-2442, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38250413

RESUMEN

In in situ-generated proppant fracturing technology without proppant injection, the distribution of the flow pattern of two-phase fracturing fluid in the fracture determines the concentration of proppant particles formed by phase change in different positions. Therefore, the study of a two-phase fracturing fluid flow pattern is of great significance to reveal the formation mechanisms of different flow patterns and guide the on-site implementation of the technology. This paper establishes a mathematical model for the two-phase fracturing fluids in fractures based on their physical properties and presents numerical experiments on the flow pattern of two-phase fracturing fluids under different conditions of injection displacement, interfacial tension, and phase change liquid (PCL) ratio. The results show that at lower injection displacements, such as 3 or 4 m3/min, it is easier to form striped shape distributions, and at higher injection displacements, such as 5 or 6 m3/min, it is easier to form droplet shape distributions. When the interfacial tension is low (15 mN/m), PCL shrinks less and is distributed in strips; when the interfacial tension is high (25, 35, and 45 mN/m), PCL shrinks more and mainly forms droplet-shaped distributions. PCL tends to form discrete droplet shape distributions at PCL volume fractions of 10, and 20%. At 30% volume fraction, PCL is distributed in strips, and at 40% volume fraction, PCL forms strips of a larger size. These findings reveal the changing pattern of two-phase fracturing fluid flow and enrich the theoretical system of in situ-generated proppant fracturing technology, which can provide theoretical support for the on-site implementation of this technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA