Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Curr Opin Struct Biol ; 80: 102599, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37104977

RESUMEN

Crosslinking mass spectrometry captures protein structures in solution. The crosslinks reveal spatial proximities as distance restraints, but do not easily reveal which of these restraints derive from the same protein conformation. This superposition can be reduced by photo-crosslinking, and adding information from protein structure models, or quantitative crosslinking reveals conformation-specific crosslinks. As a consequence, crosslinking MS has proven useful already in the context of multiple dynamic protein systems. We foresee a breakthrough in the resolution and scale of studying protein dynamics when crosslinks are used to guide deep-learning-based protein modelling. Advances in crosslinking MS, such as photoactivatable crosslinking and in-situ crosslinking, will then reveal protein conformation dynamics in the cellular context, at a pseudo-atomic resolution, and plausibly in a time-resolved manner.


Asunto(s)
Proteínas , Reactivos de Enlaces Cruzados/química , Proteínas/química , Espectrometría de Masas , Conformación Proteica
2.
Protein Sci ; 32(4): e4595, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36790757

RESUMEN

The type III secretion system (T3SS) is a large, transmembrane protein machinery used by various pathogenic gram-negative bacteria to transport virulence factors into the host cell during infection. Understanding the structure of T3SSs is crucial for future developments of therapeutics that could target this system. However, much of the knowledge about the structure of T3SS is available only for Salmonella, and it is unclear how this large assembly is conserved across species. Here, we combined cryo-electron microscopy, cross-linking mass spectrometry, and integrative modeling to determine the structure of the T3SS needle complex from Shigella flexneri. We show that the Shigella T3SS exhibits unique features distinguishing it from other structurally characterized T3SSs. The secretin pore complex adopts a new fold of its C-terminal S domain and the pilotin MxiM[SctG] locates around the outer surface of the pore. The export apparatus structure exhibits a conserved pseudohelical arrangement but includes the N-terminal domain of the SpaS[SctU] subunit, which was not present in any of the previously published virulence-related T3SS structures. Similar to other T3SSs, however, the apparatus is anchored within the needle complex by a network of flexible linkers that either adjust conformation to connect to equivalent patches on the secretin oligomer or bind distinct surface patches at the same height of the export apparatus. The conserved and unique features delineated by our analysis highlight the necessity to analyze T3SS in a species-specific manner, in order to fully understand the underlying molecular mechanisms of these systems. The structure of the type III secretion system from Shigella flexneri delineates conserved and unique features, which could be used for the development of broad-range therapeutics.


Asunto(s)
Shigella flexneri , Sistemas de Secreción Tipo III , Sistemas de Secreción Tipo III/metabolismo , Shigella flexneri/química , Shigella flexneri/metabolismo , Proteínas Bacterianas/química , Secretina/metabolismo , Microscopía por Crioelectrón
3.
Cell Chem Biol ; 29(8): 1353-1361.e6, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35705094

RESUMEN

The development of antibodies that target specific glycan structures on cancer cells or human pathogens poses a significant challenge due to the immense complexity of naturally occurring glycans. Automated glycan assembly enables the production of structurally homogeneous glycans in amounts that are difficult to derive from natural sources. Nanobodies (Nbs) are the smallest antigen-binding domains of heavy-chain-only antibodies (hcAbs) found in camelids. To date, the development of glycan-specific Nbs using synthetic glycans has not been reported. Here, we use defined synthetic glycans for alpaca immunization to elicit glycan-specific hcAbs, and describe the identification, isolation, and production of a Nb specific for the tumor-associated carbohydrate antigen Globo-H. The Nb binds the terminal fucose of Globo-H and recognizes synthetic Globo-H in solution and native Globo-H on breast cancer cells with high specificity. These results demonstrate the potential of our approach for generating glycan-targeting Nbs to be used in biomedical and biotechnological applications.


Asunto(s)
Anticuerpos de Dominio Único , Anticuerpos , Fucosa , Humanos , Inmunización , Polisacáridos , Anticuerpos de Dominio Único/química
4.
Dev Cell ; 53(5): 603-617.e8, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32433913

RESUMEN

The γ-tubulin ring complex (γTuRC) is the major microtubule nucleator in cells. The mechanism of its regulation is not understood. We purified human γTuRC and measured its nucleation properties in a total internal reflection fluorescence (TIRF) microscopy-based real-time nucleation assay. We find that γTuRC stably caps the minus ends of microtubules that it nucleates stochastically. Nucleation is inefficient compared with microtubule elongation. The 4 Å resolution cryoelectron microscopy (cryo-EM) structure of γTuRC, combined with crosslinking mass spectrometry analysis, reveals an asymmetric conformation with only part of the complex in a "closed" conformation matching the microtubule geometry. Actin in the core of the complex, and MZT2 at the outer perimeter of the closed part of γTuRC appear to stabilize the closed conformation. The opposite side of γTuRC is in an "open," nucleation-incompetent conformation, leading to a structural asymmetry explaining the low nucleation efficiency of purified human γTuRC. Our data suggest possible regulatory mechanisms for microtubule nucleation by γTuRC closure.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Tubulina (Proteína)/química , Actinas/química , Actinas/metabolismo , Microscopía por Crioelectrón , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/química , Microtúbulos/metabolismo , Simulación de Dinámica Molecular , Conformación Proteica , Imagen Individual de Molécula , Tubulina (Proteína)/metabolismo
5.
J Am Soc Mass Spectrom ; 29(2): 405-412, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29256016

RESUMEN

Quantitative cross-linking/mass spectrometry (QCLMS) is an emerging approach to study conformational changes of proteins and multi-subunit complexes. Distinguishing protein conformations requires reproducibly identifying and quantifying cross-linked peptides. Here we analyzed the variation between multiple cross-linking reactions using bis[sulfosuccinimidyl] suberate (BS3)-cross-linked human serum albumin (HSA) and evaluated how reproducible cross-linked peptides can be identified and quantified by LC-MS analysis. To make QCLMS accessible to a broader research community, we developed a workflow that integrates the established software tools MaxQuant for spectra preprocessing, Xi for cross-linked peptide identification, and finally Skyline for quantification (MS1 filtering). Out of the 221 unique residue pairs identified in our sample, 124 were subsequently quantified across 10 analyses with coefficient of variation (CV) values of 14% (injection replica) and 32% (reaction replica). Thus our results demonstrate that the reproducibility of QCLMS is in line with the reproducibility of general quantitative proteomics and we establish a robust workflow for MS1-based quantitation of cross-linked peptides. Graphical Abstract ᅟ.

6.
Nat Struct Mol Biol ; 24(3): 316-324, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28191893

RESUMEN

To initiate DNA replication, the origin recognition complex (ORC) and Cdc6 load an Mcm2-7 double hexamer onto DNA. Without ATP hydrolysis, ORC-Cdc6 recruits one Cdt1-bound Mcm2-7 hexamer, thus forming an ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) helicase-loading intermediate. Here we report a 3.9-Å structure of Saccharomyces cerevisiae OCCM on DNA. Flexible Mcm2-7 winged-helix domains (WHDs) engage ORC-Cdc6. A three-domain Cdt1 configuration embraces Mcm2, Mcm4, and Mcm6, thus comprising nearly half of the hexamer. The Cdt1 C-terminal domain extends to the Mcm6 WHD, which binds the Orc4 WHD. DNA passes through the ORC-Cdc6 and Mcm2-7 rings. Origin DNA interaction is mediated by an α-helix within Orc4 and positively charged loops within Orc2 and Cdc6. The Mcm2-7 C-tier AAA+ ring is topologically closed by an Mcm5 loop that embraces Mcm2, but the N-tier-ring Mcm2-Mcm5 interface remains open. This structure suggests a loading mechanism of the first Cdt1-bound Mcm2-7 hexamer by ORC-Cdc6.


Asunto(s)
Proteínas de Ciclo Celular/química , Replicación del ADN , Proteínas de Unión al ADN/química , Proteínas de Mantenimiento de Minicromosoma/química , Origen de Réplica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestructura , Microscopía por Crioelectrón , ADN de Hongos/química , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Espectrometría de Masas , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/ultraestructura , Modelos Moleculares , Nucleótidos/metabolismo , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
7.
Nat Commun ; 7: 11789, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27250689

RESUMEN

Budding yeast Tsr1 is a ribosome biogenesis factor with sequence similarity to GTPases, which is essential for cytoplasmic steps in 40S subunit maturation. Here we present the crystal structure of Tsr1 at 3.6 Å. Tsr1 has a similar domain architecture to translational GTPases such as EF-Tu and the selenocysteine incorporation factor SelB. However, active site residues required for GTP binding and hydrolysis are absent, explaining the lack of enzymatic activity in previous analyses. Modelling of Tsr1 into cryo-electron microscopy maps of pre-40S particles shows that a highly acidic surface of Tsr1 is presented on the outside of pre-40S particles, potentially preventing premature binding to 60S subunits. Late pre-40S maturation also requires the GTPase eIF5B and the ATPase Rio1. The location of Tsr1 is predicted to block binding by both factors, strongly indicating that removal of Tsr1 is an essential step during cytoplasmic maturation of 40S ribosomal subunits.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Biosíntesis de Proteínas , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Expresión Génica , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
8.
Open Biol ; 5(2): 150005, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25716199

RESUMEN

SMC proteins are essential components of three protein complexes that are important for chromosome structure and function. The cohesin complex holds replicated sister chromatids together, whereas the condensin complex has an essential role in mitotic chromosome architecture. Both are involved in interphase genome organization. SMC-containing complexes are large (more than 650 kDa for condensin) and contain long anti-parallel coiled-coils. They are thus difficult subjects for conventional crystallographic and electron cryomicroscopic studies. Here, we have used amino acid-selective cross-linking and mass spectrometry combined with structure prediction to develop a full-length molecular draft three-dimensional structure of the SMC2/SMC4 dimeric backbone of chicken condensin. We assembled homology-based molecular models of the globular heads and hinges with the lengthy coiled-coils modelled in fragments, using numerous high-confidence cross-links and accounting for potential irregularities. Our experiments reveal that isolated condensin complexes can exist with their coiled-coil segments closely apposed to one another along their lengths and define the relative spatial alignment of the two anti-parallel coils. The centres of the coiled-coils can also approach one another closely in situ in mitotic chromosomes. In addition to revealing structural information, our cross-linking data suggest that both H2A and H4 may have roles in condensin interactions with chromatin.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Unión al ADN/química , Modelos Moleculares , Complejos Multiproteicos/química , Proteínas Nucleares/química , Animales , Línea Celular , Pollos , Cromosomas , Ligamiento Genético , Histonas/metabolismo , Mitosis , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión
9.
J Proteomics ; 88: 120-8, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23541715

RESUMEN

Dynamic proteins and multi-protein complexes govern most biological processes. Cross-linking/mass spectrometry (CLMS) is increasingly successful in providing residue-resolution data on static proteinaceous structures. Here we investigate the technical feasibility of recording dynamic processes using isotope-labelling for quantitation. We cross-linked human serum albumin (HSA) with the readily available cross-linker BS3-d0/4 in different heavy/light ratios. We found two limitations. First, isotope labelling reduced the number of identified cross-links. This is in line with similar findings when identifying proteins. Second, standard quantitative proteomics software was not suitable for work with cross-linking. To ameliorate this we wrote a basic open source application, XiQ. Using XiQ we could establish that quantitative CLMS was technically feasible. BIOLOGICAL SIGNIFICANCE: Cross-linking/mass spectrometry (CLMS) has become a powerful tool for providing residue-resolution data on static proteinaceous structures. Adding quantitation to CLMS will extend its ability of recording dynamic processes. Here we introduce a cross-linking specific quantitation strategy by using isotope labelled cross-linkers. Using a model system, we demonstrate the principle and feasibility of quantifying cross-linking data and discuss challenges one may encounter while doing so. We then provide a basic open source application, XiQ, to carry out automated quantitation of CLMS data. Our work lays the foundations of studying the molecular details of biological processes at greater ease than this could be done so far.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Proteómica/métodos , Albúmina Sérica/química , Programas Informáticos , Isótopos de Carbono/química , Humanos
10.
EMBO J ; 29(4): 717-26, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20094031

RESUMEN

Higher-order multi-protein complexes such as RNA polymerase II (Pol II) complexes with transcription initiation factors are often not amenable to X-ray structure determination. Here, we show that protein cross-linking coupled to mass spectrometry (MS) has now sufficiently advanced as a tool to extend the Pol II structure to a 15-subunit, 670 kDa complex of Pol II with the initiation factor TFIIF at peptide resolution. The N-terminal regions of TFIIF subunits Tfg1 and Tfg2 form a dimerization domain that binds the Pol II lobe on the Rpb2 side of the active centre cleft near downstream DNA. The C-terminal winged helix (WH) domains of Tfg1 and Tfg2 are mobile, but the Tfg2 WH domain can reside at the Pol II protrusion near the predicted path of upstream DNA in the initiation complex. The linkers between the dimerization domain and the WH domains in Tfg1 and Tfg2 are located to the jaws and protrusion, respectively. The results suggest how TFIIF suppresses non-specific DNA binding and how it helps to recruit promoter DNA and to set the transcription start site. This work establishes cross-linking/MS as an integrated structure analysis tool for large multi-protein complexes.


Asunto(s)
ARN Polimerasa II/química , Factores de Transcripción TFII/química , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Reactivos de Enlaces Cruzados , ADN de Hongos/genética , Humanos , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Complejos Multiproteicos , Multimerización de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología Estructural de Proteína , Factores de Transcripción TFII/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA