Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 186: 46-54, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852376

RESUMEN

Medical waste incineration ash (MWIA) has significant concentrations of heavy metals, dioxins, and chlorine that, if handled incorrectly, might cause permanent damage to the environment and humans. The low content of calcium (Ca), silicon (Si), and aluminum (Al) is a brand-new challenge for the melting technique of MWIA. This work added coal fly ash (CFA) to explore the effect of melting on the detoxication treatment of MWIA. It was found that the produced vitrification product has a high vitreous content (98.61%) and a low potential ecological risk, with an initial ash solidification rate of 67.38%. By quantitatively assessing the morphological distribution features of heavy metals in ashes before melting and molten products, the stabilization and solidification rules of heavy metals during the melting process were investigated. This work ascertained the feasibility of co-vitrification of MWIA and CFA. In addition, the high-temperature melting and vitrification accelerated the detoxification of MWIA and the solidification of heavy metals.


Asunto(s)
Ceniza del Carbón , Incineración , Metales Pesados , Vitrificación , Ceniza del Carbón/química , Incineración/métodos , Metales Pesados/análisis , Residuos Sanitarios/análisis , Eliminación de Residuos Sanitarios/métodos
2.
J Hazard Mater ; 468: 133837, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401216

RESUMEN

The sound disposal of the ensuing heavy metal-rich plants can address the aftermath of phytoremediation. In this study, the first attempt was made to obtain heavy metals-free and phosphorus-rich biochar from phytoremediation residue (PR) by pyrolysis, and the effects of chlorinating agent type, chlorine dosage, and pyrolysis residence time on heavy metal removal, phosphorus (P) transformation, and biochar properties were investigated. The results showed that as chlorine dosage and pyrolysis residence time increased, added polyvinyl chloride (PVC) reduced the concentration of Zn in biochar to one-tenth of that in PR by intensified chlorination, where both Zn concentration (2727.50 mg/kg) and its leaching concentration (29.13 mg/L) met the utilization requirements, in which the acid-base property of biochar plays a key role in heavy metal leaching. Meanwhile, more than 90% of P in PR remained in biochar and the bioavailability of P in biochar enhanced with the decomposition of organic P to inorganic P, where the concentration of plant-availability P (Pnac) expanded from 1878.40 mg/kg in PR to 8454.00 mg/kg in biochar. This study demonstrated that heavy metal hyperaccumulator can be converted into heavy metal-free and phosphorus-rich biochar with promising applications, which provides new perspectives for the treatment of such hazardous wastes.


Asunto(s)
Metales Pesados , Fósforo , Cloro , Pirólisis , Metales Pesados/química , Carbón Orgánico/química
3.
J Hazard Mater ; 468: 133699, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368680

RESUMEN

Chlorine has been proven to promote the volatilization of heavy metals during sludge combustion. This work compared the migration of heavy metals with NaCl addition under different combustion modes at 900 â„ƒ. The combustion modes have less effect on the mineral phase of residues, but the volatilization and toxicity reduction of heavy metals were more pronounced under isothermal combustion. The mineral evolution, release of Cl, and migration of metals were dynamically tracked by the continuous sampling at different combustion time under isothermal combustion. It was found that the volatile matter and fixed carbon burned almost simultaneously, and the addition of NaCl promoted them. As combustion proceeded, the minerals gradually crystallized and the heavy metals were volatilized due to the direct and indirect chlorination. Meanwhile, the chlorination and volatilization of Zn was less than that of Pb due to its effective solidification by minerals. The combination of the adsorption by exposed char and solidification by sludge minerals influenced the dynamic leaching behavior of metals. These results will help understand the interactions between heavy metals, inorganic Cl, and Fe-Si-Al minerals during combustion, which will further help optimize the combustion strategy for both stabilization or enrichment of heavy metals when inorganic chlorine exists.

4.
Sci Total Environ ; 858(Pt 2): 159895, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36336052

RESUMEN

Si/Al-based adsorbents are effective adsorbents for capturing heavy metals in incineration flue gases at high temperatures in the furnace. In this work, the adsorption characteristics and adsorption mechanisms of Si/Al-based adsorbents for lead and cadmium vapors were studied using a combination of experimental and density functional theory (DFT) calculations. The trapping performance of a series of Si/Al-based adsorbents for Pb and Cd vapors was investigated using a self-designed gas-solid two-phase rapid adsorption experimental system. The results showed that kaolinite and montmorillonite exhibited better heavy metal adsorption capacity than SiO2 and Al2O3, and were significantly stronger for Pb than for Cd. Chemisorption dominated the capture of Pb/Cd by Si/Al-based adsorbents at high temperatures. The results of DFT calculations indicated that the chemisorption mechanisms dominated the adsorption of Pb and Cd species on the metakaolinite (001) surface, and the adsorption energy of Pb species on the metakaolinite surface was greater than that of Cd species. The exposed O atoms and unsaturated Al atoms of metakaolinite (001) surface were effective adsorption active sites for heavy metals and their chlorides. In the adsorption reaction, the binding of Pb/Cd atoms and surface exposed O sites, as well as the strong interaction between Cl and unsaturated Al atoms, were responsible for the capture of Pb and Cd chlorides by metakaolinite.


Asunto(s)
Incineración , Metales Pesados , Cadmio/química , Adsorción , Plomo , Dióxido de Silicio , Cloruros , Gases/química , Metales Pesados/química , Modelos Teóricos
5.
Chemosphere ; 313: 137466, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36481175

RESUMEN

The emission of semi-volatile heavy metals during the thermal utilization of various fuels has been a huge threat to the environment. In this study, the montmorillonite modified by thermal treatment and hydrochloric acid activation was evaluated for the PbCl2 adsorption performance. The optimum adsorption temperature of sorbents increased with the thermal treatment temperature (<500 °C) for the increased amount of reactive sites caused by the removal of interlayer water and hydroxyl, while a higher treatment temperature will collapse the lamellar structure of montmorillonite and greatly inhibit the PbCl2 adsorption. Besides, the hydrochloric acid activation can help inhibit the melting of sorbents during the adsorption process by removing the impurities and promote the PbCl2 vapor to contact with more reactive sites at higher temperatures. By comparing different sorbents, montmorillonite was found to exhibit better adsorption performance at 600-700 °C, while the sorbent thermal-treated at 500 °C and then acid-activated got the highest adsorption efficiency at 900 °C, which was 17.83% higher than that of montmorillonite. This study provided an environmental-friendly modification method to capture more heavy metals at high-temperature conditions, which can be partly realized by the recycling of montmorillonite used for the removal of normal gas pollutants in lower temperatures conditions or acid wastewater treatment.


Asunto(s)
Bentonita , Metales Pesados , Temperatura , Bentonita/química , Gases , Adsorción , Ácido Clorhídrico , Metales Pesados/química
6.
Bioresour Technol ; 359: 127450, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35697262

RESUMEN

This study aims to propose a method for upgrading biomass pyrolysis products based on the combination of sodium persulfate pretreatment and fast catalytic pyrolysis. Combined with the analysis of components and thermogravimetric analysis, the result showed that after pretreatment the biomass structure was gradually depolymerized, the contents of lignin, the reaction of activation energy and the crystallinity of cellulose decreased. Due to the destructive effect of persulfate radicals, in fast pyrolysis, the relative contents of acids and oxygen-containing substances decreased, and the relative content of phenols can significantly increase to 19.20%. The yield of aromatic hydrocarbons and total hydrocarbons had a high value under the catalytic pyrolysis in the best performance which amount of yield reached 28.66% and 33.72%, respectively. Sodium persulfate pretreatment was beneficial in the production of hydrocarbon-rich bio-oils and high-value chemicals since the radicals can effectively depolymerize lignin which promoted the process of pyrolysis.


Asunto(s)
Lignina , Pirólisis , Biocombustibles , Biomasa , Catálisis , Calor , Hidrocarburos , Lignina/química , Aceites de Plantas/química , Polifenoles
7.
Chemosphere ; 287(Pt 3): 132181, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34583297

RESUMEN

The high toxicity of Cr-Ca compounds generated during the heat treatment of solid waste will heavily threat the environment. In this work, a kind of Ca-rich river sludge which is bound with Ca and heavy metals was combusted with kaolin under 900 °C for 3 h in a muffle to study the transformation of Cr. The effects of kaolin on Cr transformation were investigated through sequential extraction, the risk assessment of heavy metals, and constant pH leaching test, also combined with crystal phase analysis of Ca-Al-Si minerals. The experimental results showed that the formation of Ca10(SiO4)3(SO4)3Cl2 was inhibited by the addition of 10% (mass fraction) kaolin and the released Cl promoted the evaporation of target elements in priority while 30% kaolin addition further inhibited the solidification of Cr. Furthermore, the effect of NaCl and CaCO3 on the Cr solidification by kaolin were also explored by leaching procedure or XRD analysis of calcination products of their mixtures. It should be noticed that the addition of kaolin in Cr2O3-CaCO3 mixture will directly react with CaCrO4 and fixed the generated Cr2O3 into internal layered structure, preventing its re-oxidization by the free CaO. This work aims to help illustrate the Cr transformation with existence of Ca during sintering of Ca-rich solid wastes and reduce the Cr contamination in future.


Asunto(s)
Metales Pesados , Residuos Sólidos , Caolín , Metales Pesados/análisis , Aguas del Alcantarillado
8.
J Hazard Mater ; 404(Pt B): 124045, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33053465

RESUMEN

The pollution of semi-volatile heavy metals is one of the key environmental risks for municipal solid waste incineration, and in-situ adsorption of metals within the furnace by mineral sorbents such as kaolin has been demonstrated as a promising emission control method. To lessen the consumption of sorbent, a novel material of amorphous silicate was produced from kaolin through pressurised hydrothermal treatment. Its performance of gaseous PbCl2 capture was tested in a fixed bed furnace and compared with unmodified kaolin and metakaolin. With increasing temperature, the adsorption rates for all sorbents declined due to higher saturated vapour pressure, while the partitions of residual form lead increased which indicated higher stability of heavy metals in the sorbent because of melting effect. The new sorbent with a larger surface area and reformed structure presented 26% more adsorption efficiency than raw kaolin at 900 °C, and increasing the modification pressure improved these properties. Additionally, the production of this high-temperature sorbent was relatively inexpensive, required little thermal energy and no chemicals to produce and no waste effluent was generated, thus being much cleaner than other modification methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA