Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Environ Manage ; 354: 120245, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38368799

RESUMEN

Cyanobacterial bloom is a pressing issue affecting water supply security and ecosystem health. Phosphorus (P) released from cyanobacterial bloom during recession is one of the most important components involved in the lake P cycle. However, little is known about the consequences and mechanisms of the P cycle in overlying water and sediment due to the anthropogenic treatments of cyanobacterial blooms. In this study, treatment methods using hydrogen peroxide (H2O2), polyaluminum chloride (PAC), and the feces of silver carp were investigated for their influence on the P cycle using microcosm experiments. Results showed that H2O2 treatment significantly increased the internal cycle of sediment-related P, while PAC treatment showed minor effects. H2O2 and PAC treatment suppressed the release of P from sediment before day 10 but promoted the release of P on day 20, while silver carp treatment suppressed the release of P during the whole experiment. The reductive dissolution of iron oxide-hydroxide was the major factor affects the desorption of P. Path analyses further suggested that overlying water properties such as dissolved oxygen (DO) and oxidation-reduction potential (ORP) play critical roles in the treatment-induced sediment P release. Our results quantify the endogenous P diffusion fluxes across the sediment-water interface attributed to cyanobacterial treatments and provide useful guidance for the selection of controlling methods, with silver carp being the most recommended of the three methods studied.


Asunto(s)
Cianobacterias , Lagos , Lagos/microbiología , Fósforo/análisis , Ecosistema , Peróxido de Hidrógeno , Eutrofización , Sedimentos Geológicos , Agua , China
2.
Commun Biol ; 5(1): 1103, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36257983

RESUMEN

Cryptochromes are blue light receptors that mediate circadian rhythm and magnetic sensing in various organisms. A typical cryptochrome consists of a conserved photolyase homology region domain and a varying carboxyl-terminal extension across species. The structure of the flexible carboxyl-terminal extension and how carboxyl-terminal extension participates in cryptochrome's signaling function remain mostly unknown. In this study, we uncover the potential missing link between carboxyl-terminal extension conformational changes and downstream signaling functions. Specifically, we discover that the blue-light induced opening of carboxyl-terminal extension in C. reinhardtii animal-like cryptochrome can structurally facilitate its interaction with Rhythm Of Chloroplast 15, a circadian-clock-related protein. Our finding is made possible by two technical advances. Using single-molecule Förster resonance energy transfer technique, we directly observe the displacement of carboxyl-terminal extension by about 15 Å upon blue light excitation. Combining structure prediction and solution X-ray scattering methods, we propose plausible structures of full-length cryptochrome under dark and lit conditions. The structures provide molecular basis for light active conformational changes of cryptochrome and downstream regulatory functions.


Asunto(s)
Relojes Circadianos , Desoxirribodipirimidina Fotoliasa , Animales , Criptocromos/metabolismo , Desoxirribodipirimidina Fotoliasa/química , Desoxirribodipirimidina Fotoliasa/metabolismo , Luz , Ritmo Circadiano
3.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803409

RESUMEN

Protein engineering is actively pursued in industrial and laboratory settings for high thermostability. Among the many protein engineering methods, rational design by bioinformatics provides theoretical guidance without time-consuming experimental screenings. However, most rational design methods either rely on protein tertiary structure information or have limited accuracies. We proposed a primary-sequence-based algorithm for increasing the heat resistance of a protein while maintaining its functions. Using adenylate kinase (ADK) family as a model system, this method identified a series of amino acid sites closely related to thermostability. Single- and double-point mutants constructed based on this method increase the thermal denaturation temperature of the mesophilic Escherichia coli (E. coli) ADK by 5.5 and 8.3 °C, respectively, while preserving most of the catalytic function at ambient temperatures. Additionally, the constructed mutants have improved enzymatic activity at higher temperature.


Asunto(s)
Adenilato Quinasa/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Calor , Adenilato Quinasa/genética , Adenilato Quinasa/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
4.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142942

RESUMEN

Brassinosteroids, the steroid hormones of plants, control physiological and developmental processes through its signaling pathway. The major brassinosteroid signaling network components, from the receptor to transcription factors, have been identified in the past two decades. The development of biotechnologies has driven the identification of novel brassinosteroid signaling components, even revealing several crosstalks between brassinosteroid and other plant signaling pathways. Herein, we would like to summarize the identification and improvement of several representative brassinosteroid signaling components through the development of new technologies, including brassinosteroid-insensitive 1 (BRI1), BRI1-associated kinase 1 (BAK1), BR-insensitive 2 (BIN2), BRI1 kinase inhibitor 1 (BKI1), BRI1-suppressor 1 (BSU1), BR signaling kinases (BSKs), BRI1 ethyl methanesulfonate suppressor 1 (BES1), and brassinazole resistant 1 (BZR1). Furthermore, improvement of BR signaling knowledge, such as the function of BKI1, BES1 and its homologous through clustered regularly interspaced short palindromic repeats (CRISPR), the regulation of BIN2 through single-molecule methods, and the new in vivo interactors of BIN2 identified by proximity labeling are described. Among these technologies, recent advanced methods proximity labeling and single-molecule methods will be reviewed in detail to provide insights to brassinosteroid and other phytohormone signaling pathway studies.


Asunto(s)
Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Proteómica/métodos , Sistemas CRISPR-Cas , Proteínas de Plantas/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA