RESUMEN
Using data samples collected with the BESIII detector at the BEPCII collider at center-of-mass energies ranging from 3.80 to 4.95 GeV, corresponding to an integrated luminosity of 20 fb^{-1}, a measurement of Born cross sections for the e^{+}e^{-}âD^{0}D[over ¯]^{0} and D^{+}D^{-} processes is presented with unprecedented precision. Many clear peaks in the line shape of e^{+}e^{-}âD^{0}D[over ¯]^{0} and D^{+}D^{-} around the mass range of G(3900), ψ(4040), ψ(4160), Y(4260), and ψ(4415), etc., are foreseen. These results offer crucial experimental insights into the nature of hadron production in the open-charm region.
RESUMEN
We report the measurement of the inclusive cross sections for e^{+}e^{-}ânOCH (where nOCH denotes non-open charm hadrons) with improved precision at center-of-mass (c.m.) energies from 3.645 to 3.871 GeV. We observe three resonances: R(3760), R(3780), and R(3810) with significances of 8.1σ, 13.7σ, and 8.8σ, respectively. The R(3810) state is observed for the first time, while the R(3760) and R(3780) states are observed for the first time in the nOCH cross sections. Two sets of resonance parameters describe the energy-dependent line shape of the cross sections well. In set I [set II], the R(3810) state has mass (3805.7±1.1±2.7) [(3805.7±1.1±2.7)] MeV/c^{2}, total width (11.6±2.9±1.9) [(11.5±2.8±1.9)] MeV, and an electronic width multiplied by the nOCH decay branching fraction of (10.9±3.8±2.5) [(11.0±3.4±2.5)] eV. In addition, we measure the branching fractions B[R(3760)ânOCH]=(25.2±16.1±30.4)%[(6.4±4.8±7.7)%] and B[R(3780)ânOCH]=(12.3±6.6±8.3)%[(10.4±4.8±7.0)%] for the first time. The R(3760) state can be interpreted as an open-charm (OC) molecular state, but containing a simple four-quark state component. The R(3810) state can be interpreted as a hadrocharmonium state.
RESUMEN
Using e^{+}e^{-} collision data corresponding to an integrated luminosity of 7.33 fb^{-1} recorded by the BESIII detector at center-of-mass energies between 4.128 and 4.226 GeV, we present an analysis of the decay D_{s}^{+}âπ^{+}π^{-}e^{+}ν_{e}, where the D_{s}^{+} is produced via the process e^{+}e^{-}âD_{s}^{*±}D_{s}^{∓}. We observe the f_{0}(980) in the π^{+}π^{-} system and the branching fraction of the decay D_{s}^{+}âf_{0}(980)e^{+}ν_{e} with f_{0}(980)âπ^{+}π^{-} measured to be (1.72±0.13_{stat}±0.10_{syst})×10^{-3}, where the uncertainties are statistical and systematic, respectively. The dynamics of the D_{s}^{+}âf_{0}(980)e^{+}ν_{e} decay are studied with the simple pole parametrization of the hadronic form factor and the Flatté formula describing the f_{0}(980) in the differential decay rate, and the product of the form factor f_{+}^{f_{0}}(0) and the câs Cabibbo-Kobayashi-Maskawa matrix element |V_{cs}| is determined for the first time to be f_{+}^{f_{0}}(0)|V_{cs}|=0.504±0.017_{stat}±0.035_{syst}. Furthermore, the decay D_{s}^{+}âf_{0}(500)e^{+}ν_{e} is searched for the first time but no signal is found. The upper limit on the branching fraction of D_{s}^{+}âf_{0}(500)e^{+}ν_{e}, f_{0}(500)âπ^{+}π^{-} decay is set to be 3.3×10^{-4} at 90% confidence level.
RESUMEN
We perform a study of the χ_{c1}(3872) line shape using the data samples of e^{+}e^{-}âγχ_{c1}(3872), χ_{c1}(3872)âD^{0}D[over ¯]^{0}π^{0}, and π^{+}π^{-}J/ψ collected with the BESIII detector. The effects of the coupled channels and the off-shell D^{*0} are included in the parametrization of the line shape. The line shape mass parameter is obtained to be M_{X}=(3871.63±0.13_{-0.05}^{+0.06}) MeV. Two poles are found on the first and second Riemann sheets corresponding to the D^{*0}D[over ¯]^{0} branch cut. The pole location on the first sheet is much closer to the D^{*0}D[over ¯]^{0} threshold than the other, and is determined to be 7.04±0.15_{-0.08}^{+0.07} MeV above the D^{0}D[over ¯]^{0}π^{0} threshold with an imaginary part -0.19±0.08_{-0.19}^{+0.14} MeV.
RESUMEN
Using a sample of (10087±44)×10^{6} J/ψ events, which is about 45 times larger than that was previously analyzed, a further investigation on the J/ψâγ3(π^{+}π^{-}) decay is performed. A significant distortion at 1.84 GeV/c^{2} in the line shape of the 3(π^{+}π^{-}) invariant mass spectrum is observed for the first time, which could be resolved by two overlapping resonant structures, X(1840) and X(1880). The new state X(1880) is observed with a statistical significance larger than 10σ. The mass and width of X(1880) are determined to be 1882.1±1.7±0.7 MeV/c^{2} and 30.7±5.5±2.4 MeV, respectively, which indicates the existence of a pp[over ¯] bound state.
RESUMEN
Using (10087±44)×10^{6} J/ψ events collected with the BESIII detector, numerous Ξ^{-} and Λ decay asymmetry parameters are simultaneously determined from the process J/ψâΞ^{-}Ξ[over ¯]^{+}âΛ(pπ^{-})π^{-}Λ[over ¯](n[over ¯]π^{0})π^{+} and its charge-conjugate channel. The precisions of α_{Λ0} for Λânπ^{0} and α[over ¯]_{Λ0} for Λ[over ¯]ân[over ¯]π^{0} compared to world averages are improved by factors of 4 and 1.7, respectively. The ratio of decay asymmetry parameters of Λânπ^{0} to that of Λâpπ^{-}, ⟨α_{Λ0}⟩/⟨α_{Λ-}⟩, is determined to be 0.873±0.012_{-0.010}^{+0.011}, where the first and the second uncertainties are statistical and systematic, respectively. The ratio is smaller than unity more than 5σ, which signifies the existence of the ΔI=3/2 transition in Λ for the first time. Besides, we test for CP symmetry in Ξ^{-}âΛπ^{-} and in Λânπ^{0} with the best precision to date.
RESUMEN
By analyzing 7.33 fb^{-1} of e^{+}e^{-} annihilation data collected at center-of-mass energies between 4.128 and 4.226 GeV with the BESIII detector, we report the observation of the semileptonic decay D_{s}^{+}âη^{'}µ^{+}ν_{µ}, with a statistical significance larger than 10σ, and the measurements of the D_{s}^{+}âηµ^{+}ν_{µ} and D_{s}^{+}âη^{'}µ^{+}ν_{µ} decay dynamics for the first time. The branching fractions of D_{s}^{+}âηµ^{+}ν_{µ} and D_{s}^{+}âη^{'}µ^{+}ν_{µ} are determined to be (2.235±0.051_{stat}±0.052_{syst})% and (0.801±0.055_{stat}±0.028_{syst})%, respectively, with precision improved by factors of 6.0 and 6.6 compared to the previous best measurements. Combined with the results for the decays D_{s}^{+}âηe^{+}ν_{e} and D_{s}^{+}âη^{'}e^{+}ν_{e}, the ratios of the decay widths are examined both inclusively and in several â^{+}ν_{â} four-momentum transfer ranges. No evidence for lepton flavor universality violation is found within the current statistics. The products of the hadronic form factors f_{+,0}^{η^{(')}}(0) and the câs Cabibbo-Kobayashi-Maskawa matrix element |V_{cs}| are determined. The results based on the two-parameter series expansion are f_{+,0}^{η}(0)|V_{cs}|=0.452±0.010_{stat}±0.007_{syst} and f_{+,0}^{η^{'}}(0)|V_{cs}|=0.504±0.037_{stat}±0.012_{syst}, which help to constrain present models on f_{+,0}^{η^{(')}}(0). The forward-backward asymmetries are determined to be ⟨A_{FB}^{η}⟩=-0.059±0.031_{stat}±0.005_{syst} and ⟨A_{FB}^{η^{'}}⟩=-0.064±0.079_{stat}±0.006_{syst} for the first time, which are consistent with the theoretical calculation.
RESUMEN
Based on data samples collected with the BESIII detector at the BEPCII collider, the process e^{+}e^{-}âΣ^{+}Σ[over ¯]^{-} is studied at center-of-mass energies sqrt[s]=2.3960, 2.6454, and 2.9000 GeV. Using a fully differential angular description of the final state particles, both the relative magnitude and phase information of the Σ^{+} electromagnetic form factors in the timelike region are extracted. The relative phase between the electric and magnetic form factors is determined to be sinΔΦ=-0.67±0.29(stat)±0.18(syst) at sqrt[s]=2.3960 GeV, ΔΦ=55°±19°(stat)±14°(syst) at sqrt[s]=2.6454 GeV, and 78°±22°(stat)±9°(syst) at sqrt[s]=2.9000 GeV. For the first time, the phase of the hyperon electromagnetic form factors is explored in a wide range of four-momentum transfer. The evolution of the phase along with four-momentum transfer is an important input for understanding its asymptotic behavior and the dynamics of baryons.
RESUMEN
Based on 4.4 fb^{-1} of e^{+}e^{-} annihilation data collected at the center-of-mass energies between 4.60 and 4.70 GeV with the BESIII detector at the BEPCII collider, the pure W-boson-exchange decay Λ_{c}^{+}âΞ^{0}K^{+} is studied with a full angular analysis. The corresponding decay asymmetry is measured for the first time to be α_{Ξ^{0}K^{+}}=0.01±0.16(stat)±0.03(syst). This result reflects the noninterference effect between the S- and P-wave amplitudes. The phase shift between S- and P-wave amplitudes has two solutions, which are δ_{p}-δ_{s}=-1.55±0.25(stat)±0.05(syst) rad or 1.59±0.25(stat)±0.05(syst) rad.
RESUMEN
We study the process e^{+}e^{-}âΛ_{c}^{+}Λ[over ¯]_{c}^{-} at twelve center-of-mass energies from 4.6119 to 4.9509 GeV using data samples collected by the BESIII detector at the BEPCII collider. The Born cross sections and effective form factors (|G_{eff}|) are determined with unprecedented precision after combining the single and double-tag methods based on the decay process Λ_{c}^{+}âpK^{-}π^{+}. Flat cross sections around 4.63 GeV are obtained and no indication of the resonant structure Y(4630), as reported by Belle, is found. In addition, no oscillatory behavior is discerned in the |G_{eff}| energy dependence of Λ_{c}^{+}, in contrast to what is seen for the proton and neutron cases. Analyzing the cross section together with the polar-angle distribution of the Λ_{c}^{+} baryon at each energy point, the moduli of electric and magnetic form factors (|G_{E}| and |G_{M}|) are extracted and separated. For the first time, the energy dependence of the form factor ratio |G_{E}/G_{M}| is observed, which can be well described by an oscillatory function.
RESUMEN
The quantum entangled J/ψâΣ^{+}Σ[over ¯]^{-} pairs from (1.0087±0.0044)×10^{10} J/ψ events taken by the BESIII detector are used to study the nonleptonic two-body weak decays Σ^{+}ânπ^{+} and Σ[over ¯]^{-}ân[over ¯]π^{-}. The CP-odd weak decay parameters of the decays Σ^{+}ânπ^{+} (α_{+}) and Σ[over ¯]^{-}ân[over ¯]π^{-} (α[over ¯]_{-}) are determined to be 0.0481±0.0031_{stat}±0.0019_{syst} and -0.0565±0.0047_{stat}±0.0022_{syst}, respectively. The decay parameter α[over ¯]_{-} is measured for the first time, and the accuracy of α_{+} is improved by a factor of 4 compared to the previous results. The simultaneously determined decay parameters allow the first precision CP symmetry test for any hyperon decay with a neutron in the final state with the measurement of A_{CP}=(α_{+}+α[over ¯]_{-})/(α_{+}-α[over ¯]_{-})=-0.080±0.052_{stat}±0.028_{syst}. Assuming CP conservation, the average decay parameter is determined as ⟨α_{+}⟩=(α_{+}-α[over ¯]_{-})/2=-0.0506±0.0026_{stat}±0.0019_{syst}, while the ratios α_{+}/α_{0} and α[over ¯]_{-}/α[over ¯]_{0} are -0.0490±0.0032_{stat}±0.0021_{syst} and -0.0571±0.0053_{stat}±0.0032_{syst}, where α_{0} and α[over ¯]_{0} are the decay parameters of the decays Σ^{+}âpπ^{0} and Σ[over ¯]^{-}âp[over ¯]π^{0}, respectively.
RESUMEN
We report on the first search for Λ[over ¯]-Λ oscillations in the decay J/ψâpK^{-}Λ[over ¯]+c.c. by analyzing 1.31×10^{9} J/ψ events accumulated with the BESIII detector at the BEPCII collider. The J/ψ events are produced using e^{+}e^{-} collisions at a center of mass energy sqrt[s]=3.097 GeV. No evidence for hyperon oscillations is observed. The upper limit for the oscillation rate of Λ[over ¯] to Λ hyperons is determined to be P(Λ)=[B(J/ψâpK^{-}Λ+c.c.)/B(J/ψâpK^{-}Λ[over ¯]+c.c.)]<4.4×10^{-6} corresponding to an oscillation parameter δm_{ΛΛ[over ¯]} of less than 3.8×10^{-18} GeV at the 90% confidence level.
RESUMEN
Using 7.33 fb^{-1} of e^{+}e^{-} collision data taken with the BESIII detector at the BEPCII collider, we report the first experimental study of the purely leptonic decay D_{s}^{*+}âe^{+}ν_{e}. Our data contain a signal of this decay with a statistical significance of 2.9σ. The branching fraction of D_{s}^{*+}âe^{+}ν_{e} is measured to be (2.1_{-0.9_{stat}}^{+1.2}±0.2_{syst})×10^{-5}, corresponding to an upper limit of 4.0×10^{-5} at the 90% confidence level. Taking the total width of the D_{s}^{*+} [(0.070±0.028) keV] predicted with the radiative D_{s}^{*+} decay from the lattice QCD calculation as input, the decay constant of the D_{s}^{*+} is determined to be f_{D_{s}^{*+}}=(214_{-46_{stat}}^{+61}±44_{syst}) MeV, corresponding to an upper limit of 354 MeV at the 90% confidence level.
RESUMEN
A narrow structure in the pΛ[over ¯] system near the mass threshold, named as X(2085), is observed in the process e^{+}e^{-}âpK^{-}Λ[over ¯] with a statistical significance greater than 20σ. Its spin and parity are determined for the first time to be J^{P}=1^{+} in an amplitude analysis, with a statistical significance greater than 5σ over other quantum numbers (0^{-},1^{-} and 2^{+}). The pole positions of X(2085) are measured to be M_{pole}=(2084_{-2}^{+4}±9) MeV and Γ_{pole}=(58_{-3}^{+4}±25) MeV, where the first uncertainties are statistical and the second ones are systematic. The analysis is based on the study of the process e^{+}e^{-}âpK^{-}Λ[over ¯] and uses the data samples collected with the BESIII detector at the center-of-mass energies sqrt[s]=4.008, 4.178, 4.226, 4.258, 4.416, and 4.682 GeV with a total integrated luminosity of 8.35 fb^{-1}.
RESUMEN
The process e^{+}e^{-}âD_{s}^{*+}D_{s}^{*-} is studied with a semi-inclusive method using data samples at center-of-mass energies from threshold to 4.95 GeV collected with the BESIII detector operating at the Beijing Electron Positron Collider. The Born cross sections of the process are measured for the first time with high precision in this energy region. Two resonance structures are observed in the energy-dependent cross sections around 4.2 and 4.4 GeV. By fitting the cross sections with a coherent sum of three Breit-Wigner amplitudes and one phase-space amplitude, the two significant structures are assigned masses of (4186.8±8.7±30) and (4414.6±3.4±6.1) MeV/c^{2}, widths of (55±15±53) and (122.5±7.5±8.1) MeV, where the first errors are statistical and the second ones are systematic. The inclusion of a third Breit-Wigner amplitude is necessary to describe a structure around 4.79 GeV.
RESUMEN
Using (1.0087±0.0044)×10^{10} J/ψ events collected with the BESIII detector at the BEPCII storage ring, the process Ξ^{0}nâΞ^{-}p is studied, where the Ξ^{0} baryon is produced in the process J/ψâΞ^{0}Ξ[over ¯]^{0} and the neutron is a component of the ^{9}Be, ^{12}C, and ^{197}Au nuclei in the beam pipe. A clear signal is observed with a statistical significance of 7.1σ. The cross section of the reaction Ξ^{0}+^{9}BeâΞ^{-}+p+^{8}Be is determined to be σ(Ξ^{0}+^{9}BeâΞ^{-}+p+^{8}Be)=(22.1±5.3_{stat}±4.5_{sys}) mb at the Ξ^{0} momentum of 0.818 GeV/c, where the first uncertainty is statistical and the second is systematic. No significant H-dibaryon signal is observed in the Ξ^{-}p final state. This is the first study of hyperon-nucleon interactions in electron-positron collisions and opens up a new direction for such research.
Asunto(s)
Electrones , Neutrones , Núcleo Celular , Movimiento (Física)RESUMEN
Using (10 087±44)×10^{6} J/ψ events collected with the BESIII detector, the radiative hyperon decay Σ^{+}âpγ is studied at an electron-positron collider experiment for the first time. The absolute branching fraction is measured to be (0.996±0.021_{stat}±0.018_{syst})×10^{-3}, which is lower than its world average value by 4.2 standard deviations. Its decay asymmetry parameter is determined to be -0.652±0.056_{stat}±0.020_{syst}. The branching fraction and decay asymmetry parameter are the most precise to date, and the accuracies are improved by 78% and 34%, respectively.
RESUMEN
Based on electron positron collision data collected with the BESIII detector operating at the BEPCII storage rings, the differential cross sections of inclusive π^{0} and K_{S}^{0} production as a function of hadron momentum, normalized by the total cross section of the e^{+}e^{-}âhadrons process, are measured at six center-of-mass energies from 2.2324 to 3.6710 GeV. Our results, which cover a relative hadron energy range from 0.1 to 0.9, significantly deviate from several theoretical calculations based on existing fragmentation functions.
RESUMEN
Using 4.7 fb^{-1} of e^{+}e^{-} collision data at center-of-mass energies from 4.661 to 4.951 GeV collected by the BESIII detector at the BEPCII collider, we observe the X(3872) production process e^{+}e^{-}âωX(3872) for the first time. The significance is 7.8σ, including both the statistical and systematic uncertainties. The e^{+}e^{-}âωX(3872) Born cross section and the corresponding upper limit at 90% confidence level at each energy point are reported. The line shape of the cross section indicates that the ωX(3872) signals may be from the decays of some nontrivial structures.
RESUMEN
We present the first measurements of the electric and magnetic form factors of the neutron in the timelike (positive q^{2}) region as function of four-momentum transfer. We explored the differential cross sections of the reaction e^{+}e^{-}ân[over ¯]n with data collected with the BESIII detector at the BEPCII accelerator, corresponding to an integrated luminosity of 354.6 pb^{-1} in total at twelve center-of-mass energies between sqrt[s]=2.0-2.95 GeV. A relative uncertainty of 18% and 12% for the electric and magnetic form factors, respectively, is achieved at sqrt[s]=2.3935 GeV. Our results are comparable in accuracy to those from electron scattering in the comparable spacelike region of four-momentum transfer. The electromagnetic form factor ratio R_{em}≡|G_{E}|/|G_{M}| is within the uncertainties close to unity. We compare our result on |G_{E}| and |G_{M}| to recent model predictions, and the measurements in the spacelike region to test the analyticity of electromagnetic form factors.