Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Angew Chem Int Ed Engl ; 63(19): e202402274, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38415322

RESUMEN

The high theoretical energy density (1274 Wh kg-1) and high safety enable the all-solid-state Na-S batteries with great promise for stationary energy storage system. However, the uncontrollable solid-liquid-solid multiphase conversion and its associated sluggish polysulfides redox kinetics pose a great challenge in tunning the sulfur speciation pathway for practical Na-S electrochemistry. Herein, we propose a new design methodology for matrix featuring separated bi-catalytic sites that control the multi-step polysulfide transformation in tandem and direct quasi-solid reversible sulfur conversion during battery cycling. It is revealed that the N, P heteroatom hotspots are more favorable for catalyzing the long-chain polysulfides reduction, while PtNi nanocrystals manipulate the direct and full Na2S4 to Na2S low-kinetic conversion during discharging. The electrodeposited Na2S on strongly coupled PtNi and N, P-codoped carbon host is extremely electroreactive and can be readily recovered back to S8 without passivation of active species during battery recharging, which delivers a true tandem electrocatalytic quasi-solid sulfur conversion mechanism. Accordingly, stable cycling of the all-solid-state soft-package Na-S pouch cells with an attractive specific capacity of 876 mAh gS -1 and a high energy of 608 Wh kgcathode -1 (172 Wh kg-1, based on the total mass of cathode and anode) at 60 °C are demonstrated.

2.
Chem Sci ; 14(5): 1205-1217, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36756340

RESUMEN

Branching phenomena are ubiquitous in both natural and artificial crystallization processes. The branched nanostructures' emergent properties depend upon their structures, but their structural tunability is limited by an inadequate understanding of their formation mechanisms. Here we developed an ensemble of Nickel-Based nano-Composites (NBCs) to investigate branching phenomena in solution-phase synthesis with precision and in depth. NBCs of 24 morphologies, including dots, core@shell dots, hollow shells, clusters, polyhedra, platelets, dendrites, urchins, and dandelions, were synthesized through systematic adjustment of multiple synthesis parameters. Relationships between the synthesis parameters and the resultant morphologies were analyzed. Classical or non-classical models of nucleation, nascent growth, 1D growth, 2D growth, 3D reconstruction, aggregation, and carburization were defined individually and then integrated to provide a holistic view of the formation mechanism of branched NBCs. Finally, guidelines were extracted and verified to guide the rational solution-phase syntheses of branched nanomaterials with emergent biological, chemical, and physical properties for potential applications in immunology, catalysis, energy storage, and optics. Demonstrating a systematic approach for deconvoluting the formation mechanism and enhancing the synthesis tunability, this work is intended to benefit the conception, development, and improvement of analogous artificial branched nanostructures. Moreover, the progress on this front of synthesis science would, hopefully, deepen our understanding of branching phenomena in nature.

3.
Nano Lett ; 23(4): 1459-1466, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36758173

RESUMEN

Electrocatalytic nitrate to ammonia conversion is a key reaction for energy and environmental sustainability. This reaction involves complex multi electron and proton transfer steps, and is impeded by the lack of catalyst for promoting both reactivity and ammonia selectivity. Here, we demonstrate active motifs based on the Chevrel phase Co2Mo6S8 exhibit an enzyme-like high turnover frequency of ∼95.1 s-1 for nitrate electroreduction to ammonia. We reveal strong synergy of multiple binding sites on this catalyst, such that the ligand effect of Co steers Had* toward hydrogenation other than hydrogen evolution, the ensemble effect of Co, and the spatial confinement effect that promote the full hydrogenation of NOx to ammonia without N-N coupling. The catalyst exhibits almost exclusive ammonia conversion with a Faradaic efficiency of 97.1% and ammonia yielding rate of 115.5 mmol·gcat-1·h-1 in neutral electrolytes. The high activity was also confirmed in electrolytes with dilute nitrate and high chloride concentrations.

4.
Nanoscale ; 15(7): 3255-3262, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36723051

RESUMEN

The anode-free battery architecture has recently emerged as a promising platform for lithium and sodium metal batteries as it not only offers the highest possible energy density, but also eliminates the need for handling hazardous metal electrodes during cell manufacturing. However, such batteries usually suffer from much faster capacity decay and are much more sensitive to even trace levels of irreversible side reactions on the anode, especially for the more reactive Na metal. This work systematically investigates electrochemical interfaces for Na plating and stripping and describes the use of the Zn surface to develop nearly fully reversible Na anodes with 1.0 M NaPF6 in a diglyme-based electrolyte. The high performance includes consistently higher than 99.9% faradaic efficiencies for a wide range of cycling currents between 0.5 and 10 mA cm-2, much more stable interfacial resistance and nearly no formation of mossy Na after 500 cycles compared with conventional Al and Cu surfaces. This improved reversibility was further confirmed under lean electrolyte conditions with a wide range of electrolyte concentrations and cycling temperatures and can be attributed to the strong interfacial binding and intrinsic sodiophilic properties of the Zn surface with Na, which not only ensured uniform Na plating but also eliminated most side reactions that would otherwise cause electrolyte depletion. As a result, full cells assembled with Na-free Zn foil and a high capacity Na3V2(PO4)3 cathode delivered ∼90% capacity retention for 100 cycles, higher than the 73% retention of Cu foils and much higher than the 39% retention of Al foils. This work provides new approaches to enable stable cycling of anode-free batteries and contribute to their applications in practical devices.

5.
Angew Chem Int Ed Engl ; 62(6): e202217009, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36494321

RESUMEN

The sluggish polysulfide redox kinetics and the uncontrollable sulfur speciation pathway, leading to serious shuttling effect and high activation barrier associated with sulfur cathode. We describe here the use of core-shell structured composite matrixes containing abundant catalytic sites for nearly fully reversible cycling of sulfur cathodes for Na-S batteries. The bidirectional tandem electrocatalysis provide successive reversible conversion of both long- and short-chain polysulfides, whereas Fe2 O3 accelerates Na2 S8 /Na2 S6 to Na2 S4 conversion and the redox-active Fe(CN)6 4- -doped polypyrrole shell catalyzes Na2 S4 reduction to Na2 S. The electrochemically reactive Na2 S can be readily charged back to sulfur with minimal overpotential. Simultaneously, stable cycling of Na-S pouch cell with a high reversible capacity of 696 mAh g-1 is also demonstrated. The bidirectional confined tandem catalysis renders the manipulation of sulfur redox electrochemistry for practical Na-S cells.

6.
Chem Sci ; 13(33): 9498-9506, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36091910

RESUMEN

Electrochemical nitrogen fixation under ambient conditions is promising for sustainable ammonia production but is hampered by high reaction barrier and strong competition from hydrogen evolution, leading to low specificity and faradaic efficiency with existing catalysts. Here we describe the activation of MoS2 in molten sodium that leads to simultaneous formation of a sulfur vacancy-rich heterostructured 1T/2H-MoS x monolayer via reduction and phase transformation. The resultant catalyst exhibits intrinsic activities for electrocatalytic N2-to-NH3 conversion, delivering a faradaic efficiency of 20.5% and an average NH3 rate of 93.2 µg h-1 mgcat -1. The interfacial heterojunctions with sulfur vacancies function synergistically to increase electron localization for locking up nitrogen and suppressing proton recombination. The 1T phase facilitates H-OH dissociation, with S serving as H-shuttling sites and to stabilize . The subsequently couple with nearby N2 and NH x intermediates bound at Mo sites, thus greatly promoting the activity of the catalyst. First-principles calculations revealed that the heterojunction with sulfur vacancies effectively lowered the energy barrier in the potential-determining step for nitrogen reduction, and, in combination with operando spectroscopic analysis, validated the associative electrochemical nitrogen reduction pathway. This work provides new insights on manipulating chalcogenide vacancies and phase junctions for preparing monolayered MoS2 with unique catalytic properties.

7.
Adv Mater ; 34(21): e2201510, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35338529

RESUMEN

One major challenge of aqueous Zn-MnO2 batteries for practical applications is their unacceptable performance below freezing temperatures. Here the use of simple Zn(ClO4 )2 aqueous electrolytes is described for all-weather Zn-MnO2 batteries even down to -60 °C. The symmetric, bulky ClO4 - anion effectively disrupts hydrogen bonds between water molecules and provides intrinsic ion diffusion even while frozen, and enables ≈260 mAh g-1 on MnO2 cathodes at -30 °C . It is identified that subfreezing cycling shifts the reaction mechanism on the MnO2 cathode from unstable H+ insertion to predominantly pseudocapacitive Zn2+ insertion, which converts MnO2 nanofibers into complicated zincated MnOx that are largely disordered and appeared as crumpled paper sheets. The Zn2+ insertion at -30 °C is faster and much more stable than at 20 °C, and delivers ≈80% capacity retention for 1000 cycles without Mn2+ additives. In addition, simple Zn(ClO4 )2 electrolyte also enables a nearly fully reversible and dendrite-free Zn anode at -30 °C with ≈98% Coulombic efficiency. Zn-MnO2 prototypes with an experimentally verified unit energy density of 148 Wh kg-1 at a negative-to-positive ratio of 1.5 and an electrolyte-to-capacity ratio of 2.0 are further demonstrated.

8.
ACS Nano ; 15(10): 16887-16895, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34612041

RESUMEN

Electrochemical hydrogenation of N2 under ambient conditions is attractive for sustainable and distributable NH3 production but is limited by the lack of selective electrocatalysts. Herein, we describe active site motifs based on the Chevrel phase chalcogenide Fe2Mo6S8 that exhibit intrinsic activities for converting N2 to NH3 in aqueous electrolytes. Despite having a very low specific surface area of ∼2 m2/g, this catalyst exhibited a Faradaic efficiency of 12.5% and an average rate of 70 µg h-1 mgcat-1 for NH3 production at -0.20 V vs RHE. Such activities were attributed to the unique composition and structure of Fe2Mo6S8 that provide synergistic multisites for activating and associating key reaction intermediates. Specifically, Fe/Mo sites assist adsorption and activation of N2, whereas S sites stabilize hydrogen intermediate Had* for N2 hydrogenation. Fe in Fe2Mo6S8 enhances binding of S with Had* and thus inhibits the competing hydrogen evolution reaction. The spatial geometry of Fe, Mo, and S sites in Fe2Mo6S8 promotes conversion of N2-Had* association intermediates, reaching a turnover frequency of ∼0.23 s-1 for NH3 production.

9.
ACS Appl Mater Interfaces ; 13(20): 23724-23731, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33983703

RESUMEN

Metal oxides are essential electrode materials for high-energy-density batteries, but it remains highly challenging to modulate their interfacial charge-transfer process and improve their cycling stability. Here, using MnO2 nanofibers as an example, we describe the application of self-assembled alkylphosphonic modification layers for significantly improved cycling stability and high-rate performance of Zn-MnO2 batteries. Two modifier organic molecules with the same phosphonic functional group but different alkyl tail lengths were employed and systematically compared, including butylphosphonic acid (BPA) and decylphosphonic acid (DPA). The phosphonic groups form strong interfacial covalent bonding and assist the generation of conformal and flexible coatings with few nanometers thickness on a MnO2 surface. The intertwined alkylphosphonic molecules in the modulation layers have interconnected phosphonic groups, which improve interfacial charge transfer of H+ ions for fast conversion of MnO2 to MnOOH without compromising electrolyte wetting. Importantly, the coating layers effectively reduce dissolutive loss of Mn2+ from MnO2 during battery cycling since diffusion of both water molecules and divalent Mn2+ cations was inhibited across the modification layers. The flexible coatings could readily adapt to the morphological changes of MnO2 during battery cycling and provide long-lasting protection. Overall, we identified that BPA has the optimal balance of hydrophobic-hydrophilic components and enabled modified MnO2 cathodes with >30% improved discharge capacity compared with unmodified MnO2 cathodes, together with substantially improved long-term cycling stability with >60% capacity retention for 400 cycles in aqueous ZnSO4 electrolytes without any Mn2+ additive. This work provides new insights into tuning electrochemical pathways that move away from the prevailing rigid, ceramic coating-based surface modifications.

10.
ACS Appl Mater Interfaces ; 13(15): 17791-17799, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33822582

RESUMEN

The practical deployment of advanced Li-S batteries is severely constrained by the uncontrollable lithium polysulfide conversion under realistic conditions. Although a plethora of advanced sulfur hosts and electrocatalysts have been examined, the fundamental mechanisms are still elusive and predictive design approaches have not yet been established. Here, we examined a series of well-defined Fe-N-C sulfur hosts with systematically varied and strongly coupled Fe3C and Fe electrocatalysts, prepared by one-step pyrolysis of a novel Fex[Fe(CN)6]y/polypyrrole composite at different temperatures. We revealed the key roles of Fe3C and metallic Fe on modulating polysulfide conversion, in that the polar Fe3C strongly adsorbs polysulfide whereas the Fe particles catalyze fast polysulfide conversion. We then highlight the superior performance of the rational host with strongly coupled Fe3C and Fe on mesoporous Fe-N-C host on promoting nearly complete polysulfide conversion, especially for the challenging short-chain Li2S4 conversion to Li2S. The electrodeposited Li2S on this host was extremely reactive and can be readily charged back to S with minimal activation overpotential. Overall, Li-S batteries equipped with the novel sulfur host delivered a high specific capacity of 1350 mAh g-1 at 0.1C with a capacity retention of 96% after 200 cycles. This work provides new insights on the functional mechanism of advanced sulfur hosts, which could eventually translate into new design principles for practical Li-S batteries.

11.
Nano Lett ; 20(9): 6837-6844, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32833461

RESUMEN

The developments of all-solid-state sodium batteries are severely constrained by poor Na-ion transport across incompatible solid-solid interfaces. We demonstrate here a triple NaxMoS2-carbon-BASE nanojunction interface strategy to address this challenge using the ß″-Al2O3 solid electrolyte (BASE). Such an interface was constructed by adhering ternary Na electrodes containing 3 wt % MoS2 and 3 wt % carbon on BASE and reducing contact angles of molten Na to ∼45°. The ternary Na electrodes exhibited twice improved elasticity for flexible deformation and intimate solid contact, whereas NaxMoS2 and carbon synergistically provide durable ionic/electronic diffusion paths, which effectively resist premature interface failure due to loss of contact and improved Na stripping utilization to over 90%. Na metal hosted via triple junctions exhibited much smaller charge-transfer resistance and 200 h of stable cycling. The novel interface architecture enabled 1100 mAh/g cycling of all-solid-state Na-S batteries when using advanced sulfur cathodes with Na-ion conductive PEO10-NaFSI binder and NaxMo6S8 redox catalytic mediator.

12.
ACS Appl Mater Interfaces ; 12(38): 42704-42710, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32857491

RESUMEN

One of the grand challenges that impedes practical applications of nanomaterials is the lack of robust manufacturing methods that are scalable, cheap, and environmentally friendly. Herein, we address this challenge by developing a microfluidic approach that produces surfactant-free Pd nanocrystals (NCs) uniformly loaded on N-doped porous carbon in a one-batch process. The deep eutectic solvent (DES) prepared from choline chloride and ethylene glycol was employed as a novel synthesis solvent, and its extended hydrogen networks and abundant ionic species effectively stabilize Pd facets and confine nanocrystal sizes without using surfactants. The microreactors provide faster heat exchange and more uniform mass transport, which in combination with DES produced Pd NCs with better-defined shape and predominately exposed Pd (100) facet. Furthermore, we describe that the N-doped functional groups in porous carbon direct dense and uniform heterogeneous growth of Pd NCs in a one-batch process, thereby eliminating a separate catalyst deposition step that is often involved in conventional synthesis. The Pd NCs in the one-batch-produced Pd/C catalysts exhibited a size distribution of ∼13 ± 3.5 nm and a high ESCA of 46.0 m2/g and delivered 362 mA/mg for formic acid electrochemical oxidation with improved stability, demonstrating the unique potentials of microfluidic reactors and DES for the controllable and scalable synthesis of electrocatalyst materials for practical applications.

13.
J Am Chem Soc ; 142(29): 12613-12619, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32090553

RESUMEN

The low-cost hydrogen production from water electrolysis is crucial to the deployment of sustainable hydrogen economy but is currently constrained by the lack of active and robust electrocatalysts from earth-abundant materials. We describe here an unconventional heterostructure composed of strongly coupled Ni-deficient LixNiO nanoclusters and polycrystalline Ni nanocrystals and its exceptional activities toward the hydrogen evolution reaction (HER) in aqueous electrolytes. The presence of lattice oxygen species with strong Brønsted basicity is a significant feature in such heterostructure, which spontaneously split water molecules for accelerated Volmer H-OH dissociation in neutral and alkaline HER. In combination with the intimate LixNiO and Ni interfacial junctions that generate localized hotspots for promoted hydride coupling and hydrogen desorption, the catalysts produce hydrogen at a current density of 10 mA cm-2 under overpotentials of only 20, 50, and 36 mV in acidic, neutral, and alkaline electrolytes, respectively, making them among the most active Pt-free catalysts developed thus far. In addition, such heterostructures also exhibited superior activity toward the hydrogen oxidation reaction in alkaline electrolytes.

14.
ACS Nano ; 13(12): 14540-14548, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31742996

RESUMEN

The practical deployment of lithium sulfur batteries demands stable cycling of high loading and dense sulfur cathodes under lean electrolyte conditions, which is very difficult to realize. We describe here a strategy of fabricating extremely dense sulfur cathodes, designed by integrating Mo6S8 nanoparticles as a multifunctional mediator with a Li-ion conducting binder and a high-performance Fe3O4@N-carbon sulfur host. The Mo6S8 nanoparticles have substantially faster Li-ion insertion kinetics compared with sulfur, and the produced LixMo6S8 particles have spontaneous redox reactivity with relevant polysulfide species (such as Li4Mo6S8 + Li2S4 ↔ Li3Mo6S8 + Li2S, ΔG = -84 kJ mol-1), which deliver a true redox catalytic sulfur conversion mechanism. In addition, LixMo6S8 particles strongly absorb polysulfide during battery cycling, which provides a quasi-solid sulfur conversion pathway and almost eliminated polysulfide dissolution. Such a pathway not only promotes growth of uniform Li2S that can be readily charged back with nearly no overpotential, but also mitigates the polysulfide-induced Li metal corrosion issue. The combination of these benefits enables stable and high capacity cycling of dense sulfur cathodes under a low electrolyte to sulfur ratio (4.2 µL mg-1), as demonstrated with cathodes with volumetric capacities of at least 1.3 Ah cm-3 and capacity retentions of ∼80% for 300 cycles. Furthermore, stable cycling of batteries under a practically relevant N/P ratio of 2.4 is also demonstrated.

15.
Nanoscale ; 10(44): 20754-20760, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30402629

RESUMEN

Aqueous batteries designed with K-ions have outstanding potential for future energy storage applications. When coupled with cathode and anode materials both operating with the intercalation mechanism, K-ion batteries could have kinetics and stability similar to Li-ion batteries in principle but with a much lower cost. However, the electrode materials developed so far still suffer from poor stability and limited activity, especially from the anode side. Herein, a new concept of symmetric K-ion batteries was developed by using potassium Prussian blue (KPB) as a bipolar material. The KPB particles were grown on flexible and strong wiper cloth substrates that were pre-coated with polypyrrole (PPy). The use of PPy as an interlayer not only boosted electrical conductivity but also ensured uniform growth of KPB particles. The synthesized KPB@PPy@wiper electrodes have superior flexibility and stability, and exhibited two redox pairs both with remarkable kinetics. When used as bipolar electrodes in combination with a gel solid-state electrolyte, they delivered a well-defined discharge voltage plateau at ∼0.6 V with superior rate capability and cycling stability. This work could provide new insights into the design of K-ion batteries, and give new options for developing flexible solid-state devices.

16.
Nanoscale ; 10(25): 11907-11912, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29900468

RESUMEN

During non-classical growth of nanostructures via assembly of primary nuclei, nucleation and assembly are assumed to be distinct processes: nanoparticles nucleate randomly and aggregate to form extended structures through Brownian motion in the presence of long-range attractive interactions. Here we investigate the relationship between these two processes by using in situ AFM, in situ, ex situ and cryo TEM and UV-Vis spectroscopy to observe growth of colloidal gold and simulations to develop a mechanistic model of the process. Our results reveal an inexorable link between nucleation and assembly with nuclei forming almost exclusively within a ∼1 nm interfacial region of existing particles. The new particles immediately close the gap either through a diffusive jump or via growth of a neck between the seed and new particle, generating aggregates exhibiting features commonly attributed to oriented attachment of independently nucleated particles. The results demonstrate that creation of initial particle interfaces leads to local environments that redirect growth towards non-classical processes.

17.
ACS Appl Mater Interfaces ; 8(22): 13673-7, 2016 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-27182714

RESUMEN

This work describes the synthesis of Chevrel phase Mo6S8 nanocubes and its application as the anode material for rechargeable Zn-ion batteries. Mo6S8 can host Zn(2+) ions reversibly in both aqueous and nonaqueous electrolytes with specific capacities around 90 mAh/g, and exhibited remarkable intercalation kinetics and cyclic stability. In addition, we assembled full cells by integrating Mo6S8 anodes with zinc-polyiodide (I(-)/I3(-))-based catholytes, and demonstrated that such full cells were also able to deliver outstanding rate performance and cyclic stability. This first demonstration of a zinc-intercalating anode could inspire the design of advanced Zn-ion batteries.

18.
Chem Commun (Camb) ; 52(31): 5379-82, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26959513

RESUMEN

We report a design of high voltage magnesium-lithium (Mg-Li) hybrid batteries through rational control of the electrolyte chemistry, electrode materials and cell architecture. Prototype devices with a structure of Mg-Li/LiFePO4 (LFP) and Mg-Li/LiMn2O4 (LMO) have been investigated. A Mg-Li/LFP cell using a dual-salt electrolyte 0.2 M [Mg2Cl2(DME)4][AlCl4]2 and 1.0 M LiTFSI exhibits voltages higher than 2.5 V (vs. Mg) and a high specific energy density of 246 W h kg(-1) under conditions that are amenable for practical applications. The successful demonstrations reported here could be a significant step forward for practical hybrid batteries.

19.
Adv Mater ; 27(42): 6598-605, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26421524

RESUMEN

An interface promoted approach is developed for guiding the design of stable and high capacity materials for Mg batteries using SnSb alloys as model materials. Experimental and theoretical studies reveal that the SnSb alloy has exceptionally high reversible capacity (420 mA h g(-1)), excellent rate capability, and good cyclic stability for hosting Mg ions due to the stabilization/promotion effects of the interfaces between the multicomponent phases generated during repeated magnesiation-demagnesiation.

20.
Phys Chem Chem Phys ; 17(20): 13307-14, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25920549

RESUMEN

A novel [Mg2(µ-Cl)2](2+) cation complex, which is highly active for reversible Mg electrodeposition, was identified for the first time in this work. This complex was found to be present in electrolytes formulated in dimethoxyethane (DME) through dehalodimerization of non-nucleophilic MgCl2 by reacting with either Mg salts (such as Mg(TFSI)2, TFSI = bis(trifluoromethane)sulfonylimide) or Lewis acid salts (such as AlEtCl2 or AlCl3). The molecular structure of the cation complex was characterized by single crystal X-ray diffraction, Raman spectroscopy and NMR. The electrolyte synthesis process was studied and rational approaches for formulating highly active electrolytes were proposed. Through control of the anions, electrolytes with an efficiency close to 100%, a wide electrochemical window (up to 3.5 V) and a high ionic conductivity (>6 mS cm(-1)) were obtained. The understanding of electrolyte synthesis in DME developed in this work could bring significant opportunities for the rational formulation of electrolytes of the general formula [Mg2(µ-Cl)2][anion]x for practical Mg batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA