Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Environ Microbiol ; 25(12): 3333-3348, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37864320

RESUMEN

Heritable, facultative symbionts are common in arthropods, often functioning in host defence. Despite moderately reduced genomes, facultative symbionts retain evolutionary potential through mobile genetic elements (MGEs). MGEs form the primary basis of strain-level variation in genome content and architecture, and often correlate with variability in symbiont-mediated phenotypes. In pea aphids (Acyrthosiphon pisum), strain-level variation in the type of toxin-encoding bacteriophages (APSEs) carried by the bacterium Hamiltonella defensa correlates with strength of defence against parasitoids. However, co-inheritance creates difficulties for partitioning their relative contributions to aphid defence. Here we identified isolates of H. defensa that were nearly identical except for APSE type. When holding H. defensa genotype constant, protection levels corresponded to APSE virulence module type. Results further indicated that APSEs move repeatedly within some H. defensa clades providing a mechanism for rapid evolution in anti-parasitoid defences. Strain variation in H. defensa also correlates with the presence of a second symbiont Fukatsuia symbiotica. Predictions that nutritional interactions structured this coinfection were not supported by comparative genomics, but bacteriocin-containing plasmids unique to co-infecting strains may contribute to their common pairing. In conclusion, strain diversity, and joint capacities for horizontal transfer of MGEs and symbionts, are emergent players in the rapid evolution of arthropods.


Asunto(s)
Áfidos , Bacteriófagos , Avispas , Animales , Áfidos/genética , Áfidos/microbiología , Simbiosis/genética , Enterobacteriaceae/genética , Genotipo , Bacteriófagos/genética
2.
Mol Ecol ; 32(4): 936-950, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36458425

RESUMEN

Insects often harbour heritable symbionts that provide defence against specialized natural enemies, yet little is known about symbiont protection when hosts face simultaneous threats. In pea aphids (Acyrthosiphon pisum), the facultative endosymbiont Hamiltonella defensa confers protection against the parasitoid, Aphidius ervi, and Regiella insecticola protects against aphid-specific fungal pathogens, including Pandora neoaphidis. Here, we investigated whether these two common aphid symbionts protect against a specialized virus A. pisum virus (APV), and whether their antifungal and antiparasitoid services are impacted by APV infection. We found that APV imposed large fitness costs on symbiont-free aphids and these costs were elevated in aphids also housing H. defensa. In contrast, APV titres were significantly reduced and costs to APV infection were largely eliminated in aphids with R. insecticola. To our knowledge, R. insecticola is the first aphid symbiont shown to protect against a viral pathogen, and only the second arthropod symbiont reported to do so. In contrast, APV infection did not impact the protective services of either R. insecticola or H. defensa. To better understand APV biology, we produced five genomes and examined transmission routes. We found that moderate rates of vertical transmission, combined with horizontal transfer through food plants, were the major route of APV spread, although lateral transfer by parasitoids also occurred. Transmission was unaffected by facultative symbionts. In summary, the presence and species identity of facultative symbionts resulted in highly divergent outcomes for aphids infected with APV, while not impacting defensive services that target other enemies. These findings add to the diverse phenotypes conferred by aphid symbionts, and to the growing body of work highlighting extensive variation in symbiont-mediated interactions.


Asunto(s)
Áfidos , Virus ARN , Avispas , Animales , Áfidos/genética , Simbiosis/genética , Enterobacteriaceae/genética , Virus ARN/genética
3.
Microb Genom ; 8(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36355418

RESUMEN

Whole-genome sequencing is widely used to better understand the transmission dynamics, the evolution and the emergence of new variants of viral pathogens. This can bring crucial information to stakeholders for disease management. Unfortunately, aquatic virus genomes are usually difficult to characterize because most of these viruses cannot be easily propagated in vitro. Developing methodologies for routine genome sequencing of aquatic viruses is timely given the ongoing threat of disease emergence. This is particularly true for pathogenic viruses infecting species of commercial interest that are widely exchanged between production basins or countries. For example, the ostreid herpesvirus type 1 (OsHV-1) is a Herpesvirus widely associated with mass mortality events of juvenile Pacific oyster Crassostrea gigas. Genomes of Herpesviruses are large and complex with long direct and inverted terminal repeats. In addition, OsHV-1 is unculturable. It therefore accumulates several features that make its genome sequencing and assembly challenging. To overcome these difficulties, we developed a tangential flow filtration (TFF) method to enrich OsHV-1 infective particles from infected host tissues. This virus purification allowed us to extract high molecular weight and high-quality viral DNA that was subjected to Illumina short-read and Nanopore long-read sequencing. Dedicated bioinformatic pipelines were developed to assemble complete OsHV-1 genomes with reads from both sequencing technologies. Nanopore sequencing allowed characterization of new structural variations and major viral isomers while having 99,98 % of nucleotide identity with the Illumina assembled genome. Our study shows that TFF-based purification method, coupled with Nanopore sequencing, is a promising approach to enable in field sequencing of unculturable aquatic DNA virus.


Asunto(s)
Crassostrea , Virus ADN , Herpesviridae , Animales , Crassostrea/genética , Virus ADN/genética , ADN Viral/genética , Herpesviridae/genética
4.
Front Cell Infect Microbiol ; 12: 921136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909967

RESUMEN

The flat oyster Ostrea edulis is an oyster species native to Europe. It has declined to functional extinction in many areas of the NE Atlantic for several decades. Factors explaining this decline include over-exploitation of natural populations and diseases like bonamiosis, regulated across both the EU and the wider world and caused by the intracellular protozoan parasite Bonamia ostreae. To date, very limited sequence data are available for this Haplosporidian species. We present here the first transcriptome of B. ostreae. As this protozoan is not yet culturable, it remains extremely challenging to obtain high-quality -omic data. Thanks to a specific parasite isolation protocol and a dedicated bioinformatic pipeline, we were able to obtain a high-quality transcriptome for an intracellular marine micro-eukaryote, which will be very helpful to better understand its biology and to consider the development of new relevant diagnostic tools.


Asunto(s)
Haplosporidios , Ostrea , Animales , Europa (Continente) , Haplosporidios/genética , Interacciones Huésped-Parásitos , Ostrea/genética , Ostrea/parasitología , Transcriptoma
5.
Virol J ; 18(1): 219, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34758862

RESUMEN

BACKGROUND: Most phages infect free-living bacteria but a few have been identified that infect heritable symbionts of insects or other eukaryotes. Heritable symbionts are usually specialized and isolated from other bacteria with little known about the origins of associated phages. Hamiltonella defensa is a heritable bacterial symbiont of aphids that is usually infected by a tailed, double-stranded DNA phage named APSE. METHODS: We conducted comparative genomic and phylogenetic studies to determine how APSE is related to other phages and prophages. RESULTS: Each APSE genome was organized into four modules and two predicted functional units. Gene content and order were near-fully conserved in modules 1 and 2, which encode predicted DNA metabolism genes, and module 4, which encodes predicted virion assembly genes. Gene content of module 3, which contains predicted toxin, holin and lysozyme genes differed among haplotypes. Comparisons to other sequenced phages suggested APSE genomes are mosaics with modules 1 and 2 sharing similarities with Bordetella-Bcep-Xylostella fastidiosa-like podoviruses, module 4 sharing similarities with P22-like podoviruses, and module 3 sharing no similarities with known phages. Comparisons to other sequenced bacterial genomes identified APSE-like elements in other heritable insect symbionts (Arsenophonus spp.) and enteric bacteria in the family Morganellaceae. CONCLUSIONS: APSEs are most closely related to phage elements in the genus Arsenophonus and other bacteria in the Morganellaceae.


Asunto(s)
Áfidos , Bacteriófagos , Animales , Bacteriófagos/genética , Enterobacteriaceae/genética , Genómica , Filogenia , Simbiosis/genética
6.
Front Microbiol ; 12: 711377, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326830

RESUMEN

The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. This is particularly true for pathogens with low per-site mutation rates, such as DNA viruses, that do not exhibit a large amount of evolutionary change among genetic sequences sampled at different time points. However, whole-genome sequencing can reveal the accumulation of novel genetic variation between samples, promising to render most, if not all, microbial pathogens measurably evolving and suitable for analytical techniques derived from population genetic theory. Here, we aim to assess the measurability of evolution on epidemiological time scales of the Ostreid herpesvirus 1 (OsHV-1), a double stranded DNA virus of which a new variant, OsHV-1 µVar, emerged in France in 2008, spreading across Europe and causing dramatic economic and ecological damage. We performed phylogenetic analyses of heterochronous (n = 21) OsHV-1 genomes sampled worldwide. Results show sufficient temporal signal in the viral sequences to proceed with phylogenetic molecular clock analyses and they indicate that the genetic diversity seen in these OsHV-1 isolates has arisen within the past three decades. OsHV-1 samples from France and New Zealand did not cluster together suggesting a spatial structuration of the viral populations. The genome-wide study of simple and complex polymorphisms shows that specific genomic regions are deleted in several isolates or accumulate a high number of substitutions. These contrasting and non-random patterns of polymorphism suggest that some genomic regions are affected by strong selective pressures. Interestingly, we also found variant genotypes within all infected individuals. Altogether, these results provide baseline evidence that whole genome sequencing could be used to study population dynamic processes of OsHV-1, and more broadly herpesviruses.

7.
PLoS Negl Trop Dis ; 15(1): e0008935, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33406151

RESUMEN

Brugia malayi is a human filarial nematode responsible for elephantiasis, a debilitating condition that is part of a broader spectrum of diseases called filariasis, including lymphatic filariasis and river blindness. Almost all filarial nematode species infecting humans live in mutualism with Wolbachia endosymbionts, present in somatic hypodermal tissues but also in the female germline which ensures their vertical transmission to the nematode progeny. These α-proteobacteria potentially provision their host with essential metabolites and protect the parasite against the vertebrate immune response. In the absence of Wolbachia wBm, B. malayi females become sterile, and the filarial nematode lifespan is greatly reduced. In order to better comprehend this symbiosis, we investigated the adaptation of wBm to the host nematode soma and germline, and we characterized these cellular environments to highlight their specificities. Dual RNAseq experiments were performed at the tissue-specific and ovarian developmental stage levels, reaching the resolution of the germline mitotic proliferation and meiotic differentiation stages. We found that most wBm genes, including putative effectors, are not differentially regulated between infected tissues. However, two wBm genes involved in stress responses are upregulated in the hypodermal chords compared to the germline, indicating that this somatic tissue represents a harsh environment to which wBm have adapted. A comparison of the B. malayi and C. elegans germline transcriptomes reveals a poor conservation of genes involved in the production of oocytes, with the filarial germline proliferative zone relying on a majority of genes absent from C. elegans. The first orthology map of the B. malayi genome presented here, together with tissue-specific expression enrichment analyses, indicate that the early steps of oogenesis are a developmental process involving genes specific to filarial nematodes, that likely result from evolutionary innovations supporting the filarial parasitic lifestyle.


Asunto(s)
Evolución Biológica , Brugia Malayi/genética , Carisoprodol , Elefantiasis/genética , Células Germinativas , Animales , Caenorhabditis elegans , Filariasis Linfática/genética , Femenino , Expresión Génica , Genoma , Humanos , Oogénesis , Análisis de Secuencia de ARN , Simbiosis , Wolbachia/fisiología
8.
Genome Biol Evol ; 11(12): 3510-3522, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31725149

RESUMEN

Heritable symbionts are common in terrestrial arthropods and often provide beneficial services to hosts. Unlike obligate, nutritional symbionts that largely persist under strict host control within specialized host cells, heritable facultative symbionts exhibit large variation in within-host lifestyles and services rendered with many retaining the capacity to transition among roles. One enigmatic symbiont, Candidatus Fukatsuia symbiotica, frequently infects aphids with reported roles ranging from pathogen, defensive symbiont, mutualism exploiter, and nutritional co-obligate symbiont. Here, we used an in vitro culture-assisted protocol to sequence the genome of a facultative strain of Fukatsuia from pea aphids (Acyrthosiphon pisum). Phylogenetic and genomic comparisons indicate that Fukatsuia is an aerobic heterotroph, which together with Regiella insecticola and Hamiltonella defensa form a clade of heritable facultative symbionts within the Yersiniaceae (Enterobacteriales). These three heritable facultative symbionts largely share overlapping inventories of genes associated with housekeeping functions, metabolism, and nutrient acquisition, while varying in complements of mobile DNA. One unusual feature of Fukatsuia is its strong tendency to occur as a coinfection with H. defensa. However, the overall similarity of gene inventories among aphid heritable facultative symbionts suggests that metabolic complementarity is not the basis for coinfection, unless playing out on a H. defensa strain-specific basis. We also compared the pea aphid Fukatsuia with a strain from the aphid Cinara confinis (Lachninae) where it is reported to have transitioned to co-obligate status to support decaying Buchnera function. Overall, the two genomes are very similar with no clear genomic signatures consistent with such a transition, which suggests co-obligate status in C. confinis was a recent event.


Asunto(s)
Áfidos/fisiología , Gammaproteobacteria/fisiología , Animales , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Gammaproteobacteria/patogenicidad , Genoma Bacteriano , Simbiosis
9.
J Virol ; 92(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29769342

RESUMEN

Polydnaviruses (PDVs) are essential for the parasitism success of tens of thousands of species of parasitoid wasps. PDVs are present in wasp genomes as proviruses, which serve as the template for the production of double-stranded circular viral DNA carrying virulence genes that are injected into lepidopteran hosts. PDV circles do not contain genes coding for particle production, thereby impeding viral replication in caterpillar hosts during parasitism. Here, we investigated the fate of PDV circles of Cotesia congregata bracovirus during parasitism of the tobacco hornworm, Manduca sexta, by the wasp Cotesia congregata Sequences sharing similarities with host integration motifs (HIMs) of Microplitis demolitor bracovirus (MdBV) circles involved in integration into DNA could be identified in 12 CcBV circles, which encode PTP and VANK gene families involved in host immune disruption. A PCR approach performed on a subset of these circles indicated that they persisted in parasitized M. sexta hemocytes as linear forms, possibly integrated in host DNA. Furthermore, by using a primer extension capture method based on these HIMs and high-throughput sequencing, we could show that 8 out of 9 circles tested were integrated in M. sexta hemocyte genomic DNA and that integration had occurred specifically using the HIM, indicating that an HIM-mediated specific mechanism was involved in their integration. Investigation of BV circle insertion sites at the genome scale revealed that certain genomic regions appeared to be enriched in BV insertions, but no specific M. sexta target site could be identified.IMPORTANCE The identification of a specific and efficient integration mechanism shared by several bracovirus species opens the question of its role in braconid parasitoid wasp parasitism success. Indeed, results obtained here show massive integration of bracovirus DNA in somatic immune cells at each parasitism event of a caterpillar host. Given that bracoviruses do not replicate in infected cells, integration of viral sequences in host DNA might allow the production of PTP and VANK virulence proteins within newly dividing cells of caterpillar hosts that continue to develop during parasitism. Furthermore, this integration process could serve as a basis to understand how PDVs mediate the recently identified gene flux between parasitoid wasps and Lepidoptera and the frequency of these horizontal transfer events in nature.


Asunto(s)
ADN Viral/metabolismo , Hemocitos/virología , Manduca/virología , Polydnaviridae/fisiología , Proteínas Virales/metabolismo , Integración Viral/fisiología , Animales , ADN Viral/genética , Hemocitos/metabolismo , Manduca/genética , Proteínas Virales/genética
10.
Genome Biol Evol ; 10(3): 786-802, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29452355

RESUMEN

Many insects host facultative, bacterial symbionts that confer conditional fitness benefits to their hosts. Hamiltonella defensa is a common facultative symbiont of aphids that provides protection against parasitoid wasps. Protection levels vary among strains of H. defensa that are also differentially infected by bacteriophages named APSEs. However, little is known about trait variation among strains because only one isolate has been fully sequenced. Generating complete genomes for facultative symbionts is hindered by relatively large genome sizes but low abundances in hosts like aphids that are very small. Here, we took advantage of methods for culturing H. defensa outside of aphids to generate complete genomes and transcriptome data for four strains of H. defensa from the pea aphid Acyrthosiphon pisum. Chosen strains also spanned the breadth of the H. defensa phylogeny and differed in strength of protection conferred against parasitoids. Results indicated that strains shared most genes with roles in nutrient acquisition, metabolism, and essential housekeeping functions. In contrast, the inventory of mobile genetic elements varied substantially, which generated strain specific differences in gene content and genome architecture. In some cases, specific traits correlated with differences in protection against parasitoids, but in others high variation between strains obscured identification of traits with likely roles in defense. Transcriptome data generated continuous distributions to genome assemblies with some genes that were highly expressed and others that were not. Single molecule real-time sequencing further identified differences in DNA methylation patterns and restriction modification systems that provide defense against phage infection.


Asunto(s)
Áfidos/microbiología , Enterobacteriaceae/genética , Secuencias Repetitivas Esparcidas/genética , Filogenia , Animales , Áfidos/parasitología , Bacteriófagos/genética , Metilación de ADN/genética , Enterobacteriaceae/virología , Genómica , Simbiosis/genética , Avispas/patogenicidad
11.
Proc Biol Sci ; 284(1866)2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29093227

RESUMEN

Heritable symbionts are common in insects with many contributing to host defence. Hamiltonella defensa is a facultative, bacterial symbiont of the pea aphid, Acyrthosiphon pisum that provides protection against the endoparasitoid wasp Aphidius ervi Protection levels vary among strains of H. defensa that are differentially infected by bacteriophages named APSEs. By contrast, little is known about mechanism(s) of resistance owing to the intractability of host-restricted microbes for functional study. Here, we developed methods for culturing strains of H. defensa that varied in the presence and type of APSE. Most H. defensa strains proliferated at 27°C in co-cultures with the TN5 cell line or as pure cultures with no insect cells. The strain infected by APSE3, which provides high levels of protection in vivo, produced a soluble factor(s) that disabled development of A. ervi embryos independent of any aphid factors. Experimental transfer of APSE3 also conferred the ability to disable A. ervi development to a phage-free strain of H. defensa Altogether, these results provide a critical foundation for characterizing symbiont-derived factor(s) involved in host protection and other functions. Our results also demonstrate that phage-mediated transfer of traits provides a mechanism for innovation in host restricted symbionts.


Asunto(s)
Áfidos/microbiología , Áfidos/parasitología , Enterobacteriaceae/fisiología , Interacciones Huésped-Parásitos , Avispas/fisiología , Animales , Áfidos/virología , Bacteriófagos/fisiología , Enterobacteriaceae/virología , Simbiosis
12.
Insect Biochem Mol Biol ; 76: 118-147, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27522922

RESUMEN

Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.


Asunto(s)
Expresión Génica , Genoma de los Insectos , Manduca/genética , Animales , Perfilación de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Manduca/crecimiento & desarrollo , Pupa/genética , Pupa/crecimiento & desarrollo , Análisis de Secuencia de ADN , Sintenía
13.
Insect Biochem Mol Biol ; 62: 86-99, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25584519

RESUMEN

During oviposition, Cotesia congregata parasitoid wasps inject into their host, Manduca sexta, some biological factors such as venom, ovarian fluid and a symbiotic polydnavirus (PDV) named Cotesia congregata bracovirus (CcBV). During parasitism, complex interactions occur between wasp-derived factors and host targets that lead to important modifications in host physiology. In particular, the immune response leading to wasp egg encapsulation is inhibited allowing wasp survival. To date, the regulation of host genes during the interaction had only been studied for a limited number of genes. In this study, we analysed the global impact of parasitism on host gene regulation 24 h post oviposition by high throughput 454 transcriptomic analyses of two tissues known to be involved in the host immune response (hemocytes and fat body). To identify specific effects of parasitism on host transcription at this time point, transcriptomes were obtained from non-treated and parasitized larvae, and also from larvae injected with heat-killed bacteria and double stimulated larvae that were parasitized prior to bacterial challenge. Results showed that, immune challenge by bacteria leads to induction of certain antimicrobial peptide (AMP) genes in M. sexta larvae whether they were parasitized or not prior to bacterial challenge. These results show that at 24 h post oviposition pathways leading to expression of AMP genes are not all inactivated suggesting wasps are in an antiseptic environment. In contrast, at this time point genes involved in phenoloxidase activation and cellular immune responses were globally down-regulated after parasitism in accordance with the observed inhibition of wasp egg encapsulation.


Asunto(s)
Manduca/inmunología , Manduca/parasitología , Polydnaviridae/inmunología , Transcriptoma , Avispas/fisiología , Animales , Cuerpo Adiposo/inmunología , Cuerpo Adiposo/metabolismo , Femenino , Regulación de la Expresión Génica , Hemocitos/inmunología , Hemocitos/metabolismo , Interacciones Huésped-Parásitos , Proteínas de Insectos/genética , Proteínas de Insectos/inmunología , Proteínas de Insectos/metabolismo , Larva/inmunología , Larva/parasitología , Larva/virología , Manduca/genética , Manduca/virología , Avispas/virología
14.
J Virol ; 88(16): 8795-812, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24872581

RESUMEN

UNLABELLED: Bracoviruses (BVs) from the Polydnaviridae family are symbiotic viruses used as biological weapons by parasitoid wasps to manipulate lepidopteran host physiology and induce parasitism success. BV particles are produced by wasp ovaries and injected along with the eggs into the caterpillar host body, where viral gene expression is necessary for wasp development. Recent sequencing of the proviral genome of Cotesia congregata BV (CcBV) identified 222 predicted virulence genes present on 35 proviral segments integrated into the wasp genome. To date, the expressions of only a few selected candidate virulence genes have been studied in the caterpillar host, and we lacked a global vision of viral gene expression. In this study, a large-scale transcriptomic analysis by 454 sequencing of two immune tissues (fat body and hemocytes) of parasitized Manduca sexta caterpillar hosts allowed the detection of expression of 88 CcBV genes expressed 24 h after the onset of parasitism. We linked the expression profiles of these genes to several factors, showing that different regulatory mechanisms control viral gene expression in the host. These factors include the presence of signal peptides in encoded proteins, diversification of promoter regions, and, more surprisingly, gene position on the proviral genome. Indeed, most genes for which expression could be detected are localized in particular proviral regions globally producing higher numbers of circles. Moreover, this polydnavirus (PDV) transcriptomic analysis also reveals that a majority of CcBV genes possess at least one intron and an arthropod transcription start site, consistent with an insect origin of these virulence genes. IMPORTANCE: Bracoviruses (BVs) are symbiotic polydnaviruses used by parasitoid wasps to manipulate lepidopteran host physiology, ensuring wasp offspring survival. To date, the expressions of only a few selected candidate BV virulence genes have been studied in caterpillar hosts. We performed a large-scale analysis of BV gene expression in two immune tissues of Manduca sexta caterpillars parasitized by Cotesia congregata wasps. Genes for which expression could be detected corresponded to genes localized in particular regions of the viral genome globally producing higher numbers of circles. Our study thus brings an original global vision of viral gene expression and paves the way to the determination of the regulatory mechanisms enabling the expression of BV genes in targeted organisms, such as major insect pests. In addition, we identify sequence features suggesting that most BV virulence genes were acquired from insect genomes.


Asunto(s)
Expresión Génica/genética , Genes Virales/genética , Genoma Viral/genética , Polydnaviridae/genética , Avispas/genética , Avispas/virología , Animales , Perfilación de la Expresión Génica/métodos , Manduca/genética , Manduca/virología , Regiones Promotoras Genéticas/genética
15.
Curr Opin Insect Sci ; 6: 35-43, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32846671

RESUMEN

The Polydnaviridae (PDV), including the Bracovirus (BV) and Ichnovirus (IV) genera, originated from the integration of viruses in the genomes of two parasitoid wasp lineages. In a remarkable example of convergent evolution BVs evolved from the domestication of a nudivirus, while IVs originate from a different ancestral virus belonging to a new virus entity. In both cases the ancestor genomes have been maintained in wasp genomes as endogenous viral elements involved in production of particles containing DNA encoding virulence genes that are injected into lepidopteran hosts. However many PDV virulence genes appear to be of eukaryotic origin, and expansion and diversification of these genes have led to the production of novel PDVs in different wasp species that promote survival of offspring in particular hosts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA