Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Int J Obes (Lond) ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39289583

RESUMEN

BACKGROUND/OBJECTIVES: The PREMEDI study was designed to assess the efficacy of nutritional counseling aimed at promoting Mediterranean Diet (MD) during pregnancy on the incidence of overweight or obesity at 24 months in the offspring. METHODS: PREMEDI was a parallel-arm randomized-controlled trial. 104 women in their first trimester of pregnancy were randomly assigned in a 1:1 ratio to standard obstetrical and gynecological care alone (CT) or with nutritional counseling promoting MD. Women enrolled in the MD arm were provided with 3 sessions of nutritional counseling (one session per trimester). The main outcome was the proportion of overweight or obesity among the offspring at the age of 24 months. Maternal MD-adherence and weight gain during pregnancy were also evaluated. Lastly, the evaluation of epigenetic modulation of metabolic pathways in the offspring was analyzed in cord blood. RESULTS: Five women in the MD arm and 2 in the CT arm were lost to follow-up, so a total of 97 completed the study. At 24 months, children of MD mothers were less likely to have overweight or obesity than those of the CT mothers (6% vs. 33%, absolute risk difference = -27%, 95% CI -41% to -12%, p < 0.001; number needed to treat 3, 95% CI 2 to 8, intention to treat analysis). A significantly higher increase of MD-adherence during the trial was observed in the MD arm compared to the CT arm. A similar body weight gain at the end of pregnancy was observed in the two arms. The mean (SD) methylation rate of the leptin gene in cord blood was 30.4 (1.02) % and 16.9 (2.99) % in the CT and MD mothers, respectively (p < 0.0001). CONCLUSIONS: MD during pregnancy could be an effective strategy for preventing pediatric overweight or obesity at 24 months. This effect involves, at least in part, an epigenetic modification of leptin expression.

2.
Brain Sci ; 14(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39061399

RESUMEN

According to the World Health Organization (WHO), major depressive disorder (MDD) is the fourth leading cause of disability worldwide and the second most common disease after cardiovascular events. Approximately 280 million people live with MDD, with incidence varying by age and gender (female to male ratio of approximately 2:1). Although a variety of antidepressants are available for the different forms of MDD, there is still a high degree of individual variability in response and tolerability. Given the complexity and clinical heterogeneity of these disorders, a shift from "canonical treatment" to personalized medicine with improved patient stratification is needed. OPADE is a non-profit study that researches biomarkers in MDD to tailor personalized drug treatments, integrating genetics, epigenetics, microbiome, immune response, and clinical data for analysis. A total of 350 patients between 14 and 50 years will be recruited in 6 Countries (Italy, Colombia, Spain, The Netherlands, Turkey) for 24 months. Real-time electroencephalogram (EEG) and patient cognitive assessment will be correlated with biological sample analysis. A patient empowerment tool will be deployed to ensure patient commitment and to translate patient stories into data. The resulting data will be used to train the artificial intelligence/machine learning (AI/ML) predictive tool.

3.
Acta Neuropathol Commun ; 12(1): 51, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38576030

RESUMEN

DNA methylation analysis based on supervised machine learning algorithms with static reference data, allowing diagnostic tumour typing with unprecedented precision, has quickly become a new standard of care. Whereas genome-wide diagnostic methylation profiling is mostly performed on microarrays, an increasing number of institutions additionally employ nanopore sequencing as a faster alternative. In addition, methylation-specific parallel sequencing can generate methylation and genomic copy number data. Given these diverse approaches to methylation profiling, to date, there is no single tool that allows (1) classification and interpretation of microarray, nanopore and parallel sequencing data, (2) direct control of nanopore sequencers, and (3) the integration of microarray-based methylation reference data. Furthermore, no software capable of entirely running in routine diagnostic laboratory environments lacking high-performance computing and network infrastructure exists. To overcome these shortcomings, we present EpiDiP/NanoDiP as an open-source DNA methylation and copy number profiling suite, which has been benchmarked against an established supervised machine learning approach using in-house routine diagnostics data obtained between 2019 and 2021. Running locally on portable, cost- and energy-saving system-on-chip as well as gpGPU-augmented edge computing devices, NanoDiP works in offline mode, ensuring data privacy. It does not require the rigid training data annotation of supervised approaches. Furthermore, NanoDiP is the core of our public, free-of-charge EpiDiP web service which enables comparative methylation data analysis against an extensive reference data collection. We envision this versatile platform as a useful resource not only for neuropathologists and surgical pathologists but also for the tumour epigenetics research community. In daily diagnostic routine, analysis of native, unfixed biopsies by NanoDiP delivers molecular tumour classification in an intraoperative time frame.


Asunto(s)
Epigenómica , Neoplasias , Humanos , Aprendizaje Automático no Supervisado , Nube Computacional , Neoplasias/diagnóstico , Neoplasias/genética , Metilación de ADN
4.
Sci Rep ; 13(1): 18197, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875530

RESUMEN

The gut-brain axis involves several bidirectional pathway communications including microbiome, bacterial metabolites, neurotransmitters as well as immune system and is perturbed both in brain and in gastrointestinal disorders. Consistently, microbiota-gut-brain axis has been found altered in autism spectrum disorder (ASD). We reasoned that such alterations occurring in ASD may impact both on methylation signatures of human host fecal DNA (HFD) and possibly on the types of human cells shed in the stools from intestinal tract giving origin to HFD. To test this hypothesis, we have performed whole genome methylation analysis of HFD from an age-restricted cohort of young children with ASD (N = 8) and healthy controls (N = 7). In the same cohort we have previously investigated the fecal microbiota composition and here we refined such analysis and searched for eventual associations with data derived from HFD methylome analysis. Our results showed that specific epigenetic signatures in human fecal DNA, especially at genes related to inflammation, associated with the disease. By applying methylation-based deconvolution algorithm, we found that the HFD derived mainly from immune cells and the relative abundance of those differed between patients and controls. Consistently, most of differentially methylated regions fitted with genes involved in inflammatory response. Interestingly, using Horvath epigenetic clock, we found that ASD affected children showed both epigenetic and microbiota age accelerated. We believe that the present unprecedented approach may be useful for the identification of the ASD associated HFD epigenetic signatures and may be potentially extended to other brain disorders and intestinal inflammatory diseases.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Humanos , Niño , Preescolar , Trastorno del Espectro Autista/metabolismo , Microbioma Gastrointestinal/genética , Disbiosis/microbiología , Metilación de ADN , Inflamación/genética , Inflamación/complicaciones
5.
World Neurosurg ; 179: e404-e415, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37659753

RESUMEN

BACKGROUND: Atypical teratoid/rhabdoid tumor (AT/RT) of the nervous system is a rare and highly malignant neoplasm, mainly affecting children, first recognized as a pathologic entity in 1996 and added to the World Health Organization Classification of the Tumors of the Central Nervous System in 2000. AT/RT is even rarer among adults and is associated with a worse prognosis. The aim of the present study was to analyze the different tumor features according to the location in adults. METHODS: A comprehensive and detailed literature review of AT/RTs in adults was made. The demographic, management, and outcome data associated with tumor location were analyzed and compared; histopathologic and molecular features were also discussed. Furthermore, we added our personal case with brain hemispheric localization and reported a progression-free survival of 103 months after gross total resection and adjuvant radiotherapy showing a peculiar histopathologic pattern. RESULTS: Female sex is mainly affected by AT/RT on median localizations, both intracranial and spinal, and by all sellar region cases. Gross total resection is mainly achieved among lateral compared with median localizations. Combined radiotherapy and chemotherapy is the most adopted adjuvant treatment in all tumor localizations and is related to better outcome. Postoperative death is reported only among sellar region localizations, whereas brain hemispheric cases show the best overall survival. CONCLUSIONS: AT/RTs show different and peculiar features according to their location, which significantly affects the outcome; precise knowledge of them helps the neurosurgeon in planning the best strategy for treatment.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Tumor Rabdoide , Teratoma , Niño , Adulto , Humanos , Femenino , Tumor Rabdoide/cirugía , Teratoma/cirugía , Pronóstico , Sistema Nervioso Central
6.
Cell Death Dis ; 14(9): 638, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758718

RESUMEN

Despite intense research efforts, glioblastoma remains an incurable brain tumor with a dismal median survival time of 15 months. Thus, identifying new therapeutic targets is an urgent need. Here, we show that the lysine methyltransferase SETD8 is overexpressed in 50% of high-grade gliomas. The small molecule SETD8 inhibitor UNC0379, as well as siRNA-mediated inhibition of SETD8, blocked glioblastoma cell proliferation, by inducing DNA damage and activating cell cycle checkpoints. Specifically, in p53-proficient glioblastoma cells, SETD8 inhibition and DNA damage induced p21 accumulation and G1/S arrest whereas, in p53-deficient glioblastoma cells, DNA damage induced by SETD8 inhibition resulted in G2/M arrest mediated by Chk1 activation. Checkpoint abrogation, by the Wee1 kinase inhibitor adavosertib, induced glioblastoma cell lines and primary cells, DNA-damaged by UNC0379, to progress to mitosis where they died by mitotic catastrophe. Finally, UNC0379 and adavosertib synergized in restraining glioblastoma growth in a murine xenograft model, providing a strong rationale to further explore this novel pharmacological approach for adjuvant glioblastoma treatment.


Asunto(s)
Glioblastoma , Enfermedades del Recién Nacido , Humanos , Animales , Ratones , Recién Nacido , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Apoptosis , Proteína p53 Supresora de Tumor , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular
7.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37373098

RESUMEN

Cell identity is determined by the chromatin structure and profiles of gene expression, which are dependent on chromatin accessibility and DNA methylation of the regions critical for gene expression, such as enhancers and promoters. These epigenetic modifications are required for mammalian development and are essential for the establishment and maintenance of the cellular identity. DNA methylation was once thought to be a permanent repressive epigenetic mark, but systematic analyses in various genomic contexts have revealed a more dynamic regulation than previously thought. In fact, both active DNA methylation and demethylation occur during cell fate commitment and terminal differentiation. To link methylation signatures of specific genes to their expression profiles, we determined the methyl-CpG configurations of the promoters of five genes switched on and off during murine postnatal brain differentiation by bisulfite-targeted sequencing. Here, we report the structure of significant, dynamic, and stable methyl-CpG profiles associated with silencing or activation of the expression of genes during neural stem cell and brain postnatal differentiation. Strikingly, these methylation cores mark different mouse brain areas and cell types derived from the same areas during differentiation.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Animales , Ratones , Islas de CpG , Epigénesis Genética , Diferenciación Celular/genética , Cromatina/genética , Mamíferos/genética
8.
Cells ; 12(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37371106

RESUMEN

Dacarbazine is an important drug in the therapeutic landscape of leiomyosarcoma (LMS). Alkylating agents are subjected to resistance mechanisms based on anti-apoptotic pathways and repair mechanisms, including the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). In this retrospective study, the methylation status of the MGMT promoter in histological tumor samples from patients with LMS, dacarbazine-based regimens-treated, was measured and correlated with clinical outcomes aimed at optimizing the use of dacarbazine in soft tissue sarcomas. The patients with unmethylated MGMT had better outcomes than those with methylated MGMT. Patients without MGMT methylation had better Progression Free Survival (PFS) when aged ≥62 years compared to those aged <62 years, while PFS of patients with methylated MGMT was less favorable independently of age (p = 0.0054). The patients without a methylated MGMT gene had higher Disease control rate (DCR). These results are not in agreement with the role of the methylated MGMT gene in other tumors, and with this study, we demonstrated the correlation between methylated MGMT and poor prognosis; despite that, sample smallness, heterogeneity of LMS and of treatment history could be selection bias. Predictive markers of response to chemotherapies in sarcomas remain an unmet need.


Asunto(s)
Neoplasias Encefálicas , Leiomiosarcoma , Humanos , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/patología , Dacarbazina/uso terapéutico , ADN , Metilación de ADN/genética , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/uso terapéutico , Enzimas Reparadoras del ADN/genética , Leiomiosarcoma/tratamiento farmacológico , Leiomiosarcoma/genética , Metiltransferasas/genética , Estudios Retrospectivos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Proteínas Supresoras de Tumor/genética , Persona de Mediana Edad
9.
Pathol Res Pract ; 243: 154340, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36738518

RESUMEN

In recent years, WHO grading criteria have emerged as an inaccurate tool to correctly predict the risk of progression/recurrence for meningioma patients. Therefore, great efforts were made to find further prognostic factors that could predict the clinical course of meningiomas. Why morphological criteria are not able alone to correctly predict outcome in all patients? What are the biological parameters underlying a more aggressive behavior? Are there any molecular markers can be integrated in the risk assessment? Could new technologies, such as methylome profiling, contribute to provide additional tools in patients prognostic evaluation? We performed a literature review to find answers to these questions. Meningiomas have been demonstrated to be extremely heterogeneous neoplasms, also from the genetic and epigenetic standpoints. However, WHO Classification of Tumours of the central Nervous System 5th edition introduced only CDKN2A/B deletion and TERT promoter mutations as poor prognostic, grade 3 defining parameters. The different proposals of integrated grading, taking into account cytogenetic alterations and study of methylation profile, have not yet been incorporated in WHO grading criteria. Work in progress: this is the summary of current knowledge. Further studies are needed to expand the diagnostic and prognostic equipment to be integrated into clinical practice.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Meningioma/patología , Pronóstico , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patología , Clasificación del Tumor , Organización Mundial de la Salud , Recurrencia Local de Neoplasia/patología
10.
Brain Sci ; 13(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36831778

RESUMEN

Diagnoses of primary malignant mesenchymal brain tumors are a challenge for pathologists. Here, we report the case of a 52-year-old man with a primary brain tumor, histologically diagnosed as a high-grade glioma, not otherwise specified (NOS). The patient underwent two neurosurgeries in several months, followed by radiotherapy and chemotherapy. We re-examined the tumor samples by methylome profiling. Methylome analysis revealed an epi-signature typical of a primary intracranial sarcoma, DICER1-mutant, an extremely rare tumor. The diagnosis was confirmed by DNA sequencing that revealed a mutation in DICER1 exon 25. DICER1 mutations were not found in the patient's blood cells, thus excluding an inherited DICER1 syndrome. The methylome profile of the DICER1 mutant sarcoma was then compared with that of a high-grade glioma, a morphologically similar tumor type. We found that several relevant regions were differentially methylated. Taken together, we report the morphological, epigenetic, and genetic characterization of the sixth described case of an adult primary intracranial sarcoma, DICER1-mutant to-date. Furthermore, this case report underscores the importance of methylome analysis to refine primary brain tumor diagnosis and to avoid misdiagnosis among morphologically similar subtypes.

11.
Int J Cancer ; 153(3): 476-488, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36479695

RESUMEN

Glioblastoma, the most common and heterogeneous tumor affecting brain parenchyma, is dismally characterized by a very poor prognosis. Thus, the search of new, more effective treatments is a vital need. Here, we will review the druggable epigenetic features of glioblastomas that are, indeed, currently explored in preclinical studies and in clinical trials for the development of more effective, personalized treatments. In detail, we will review the studies that have led to the identification of epigenetic signatures, IDH mutations, MGMT gene methylation, histone modification alterations, H3K27 mutations and epitranscriptome landscapes of glioblastomas, in each case discussing the corresponding targeted therapies and their potential efficacy. Finally, we will emphasize how recent technological improvements permit to routinely investigate many glioblastoma epigenetic biomarkers in clinical practice, further enforcing the hope that personalized drugs, targeting specific epigenetic features, could be in future a therapeutic option for selected patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/terapia , Pronóstico , Proteínas Supresoras de Tumor/genética , Metilación de ADN , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Metilasas de Modificación del ADN/genética , Mutación , Epigénesis Genética , Enzimas Reparadoras del ADN/genética , Biomarcadores de Tumor/genética
12.
Cancers (Basel) ; 14(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36551529

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor and is poorly susceptible to cytotoxic therapies. Amplification of the epidermal growth factor receptor (EGFR) and deletion of exons 2 to 7, which generates EGFR variant III (vIII), are the most common molecular alterations of GBMs that contribute to the aggressiveness of the disease. Recently, it has been shown that EGFR/EGFRvIII-targeted inhibitors enhance mitochondrial translocation by causing mitochondrial accumulation of these receptors, promoting the tumor drug resistance; moreover, they negatively modulate intrinsic mitochondria-mediated apoptosis by sequestering PUMA, leading to impaired apoptotic response in GBM cells. N6-isopentenyladenosine (i6A or iPA), a cytokinin consisting of an adenosine linked to an isopentenyl group deriving from the mevalonate pathway, has antiproliferative effects on numerous tumor cells, including GBM cells, by inducing cell death in vitro and in vivo. Here, we observed that iPA inhibits the mitochondrial respiration in GBM cells by preventing the translocation of EGFR/EGFRvIII to the mitochondria and allowing PUMA to interact with them by promoting changes in mitochondrial activity, thus playing a critical role in cell death. Our findings clearly demonstrate that iPA interferes with mitochondrial bioenergetic capacity, providing a rationale for an effective strategy for treating GBM.

13.
Nat Commun ; 13(1): 7148, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443295

RESUMEN

The diagnosis of sinonasal tumors is challenging due to a heterogeneous spectrum of various differential diagnoses as well as poorly defined, disputed entities such as sinonasal undifferentiated carcinomas (SNUCs). In this study, we apply a machine learning algorithm based on DNA methylation patterns to classify sinonasal tumors with clinical-grade reliability. We further show that sinonasal tumors with SNUC morphology are not as undifferentiated as their current terminology suggests but rather reassigned to four distinct molecular classes defined by epigenetic, mutational and proteomic profiles. This includes two classes with neuroendocrine differentiation, characterized by IDH2 or SMARCA4/ARID1A mutations with an overall favorable clinical course, one class composed of highly aggressive SMARCB1-deficient carcinomas and another class with tumors that represent potentially previously misclassified adenoid cystic carcinomas. Our findings can aid in improving the diagnostic classification of sinonasal tumors and could help to change the current perception of SNUCs.


Asunto(s)
Carcinoma , Metilación de ADN , Humanos , Metilación de ADN/genética , Proteómica , Reproducibilidad de los Resultados , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción
14.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292965

RESUMEN

Anderson−Fabry disease (FD) is an X-linked disease caused by a functional deficit of the α-galactosidase A enzyme. FD diagnosis relies on the clinical manifestations and research of GLA gene mutations. However, because of the lack of a clear genotype/phenotype correlation, FD diagnosis can be challenging. Recently, several studies have highlighted the importance of investigating DNA methylation patterns for confirming the correct diagnosis of different rare Mendelian diseases, but to date, no such studies have been reported for FD. Thus, in the present investigation, we analyzed for the first time the genome-wide methylation profile of a well-characterized cohort of patients with Fabry disease. We profiled the methylation status of about 850,000 CpG sites in 5 FD patients, all carrying the same mutation in the GLA gene (exon 6 c.901C>G) and presenting comparable low levels of α-Gal A activity. We found that, although the whole methylome profile did not discriminate the FD group from the unaffected one, several genes were significantly differentially methylated in Fabry patients. Thus, we provide here a proof of concept, to be tested in patients with different mutations and in a larger cohort, that the methylation state of specific genes can potentially identify Fabry patients and possibly predict organ involvement and disease evolution.


Asunto(s)
Enfermedad de Fabry , Humanos , Enfermedad de Fabry/diagnóstico , Enfermedad de Fabry/genética , alfa-Galactosidasa/genética , Epigenoma , Fenotipo , Mutación
15.
Front Nutr ; 9: 951223, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313083

RESUMEN

Introduction: Maternal diet during pregnancy has been linked to offspring allergy risk and it could represent a potential target for allergy prevention. The Mediterranean Diet (MD) is considered one of the healthiest dietary models. Randomized-controlled trials on the effect of MD in preventing pediatric allergic diseases are still needed. Methods and analysis: The Mediterranean Diet during Pregnancy study (PREMEDI) will be a 9-month multi-center, randomized-controlled, parallel groups, prospective trial. Healthy women (20-35 years) at their first trimester of pregnancy at risk for atopy baby, will be randomly allocated to Group 1 (standard obstetrical and gynecological follow-up and nutritional counseling to promote MD) or Group 2 (standard obstetrical and gynecological follow-up alone). 138 mother-child pair per group will be needed to detect a reduction in cumulative incidence of ≥1 allergic disease at 24 months of age. The primary study aim will be the evaluation of the occurrence of allergic disorders in the first 24 months of life. The secondary aims will be the evaluation of maternal weight gain, pregnancy/perinatal complications, growth indices and occurrence of other chronic disorders, mother-child pair adherence to MD and gut microbiome features, breastfeeding duration and breast milk composition, epigenetic modulation of genes involved in immune system, and metabolic pathways in the offspring. Ethics and dissemination: The study protocol has been approved by the Ethics Committee of the University of Naples Federico II (number 283/21) and it will be conducted in accordance with the Helsinki Declaration (Fortaleza revision, 2013), the Good Clinical Practice Standards (CPMP/ICH/135/95), the Italian Decree-Law 196/2003 regarding personal data and the European regulations on this subject. The study has been registered in the Clinical Trials Protocol Registration System. Clinical trial registration: [http://clinicaltrials.gov], identifier [NCT05119868].

16.
Brain Sci ; 12(9)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36138961

RESUMEN

Ependymomas are commonly classified as low-grade tumors, although they may harbor a malignant behavior characterized by distant neural dissemination and spinal drop metastasis. Extra-CNS ependymoma metastases are extremely rare and only few cases have been reported in the lung, lymph nodes, pleura, mediastinum, liver, bone, and diaphragmatic, abdominal, and pelvic muscles. A review of the literature yielded 14 other case reports metastasizing outside the central nervous system, but to our knowledge, no studies describe metastasis in the paravertebral muscles. Herein, we report the case of a 39-year-old patient with a paraspinal muscles metastasis from a myxopapillary ependymoma. The neoplasm was surgically excised and histologically and molecularly analyzed. Both the analyses were consistent with the diagnosis of muscle metastases of myxopapillary ependymoma. The here-presented case report is first case in the literature of a paraspinal muscles metastasis of myxopapillary ependymoma.

17.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35806153

RESUMEN

Epigenetic changes in DNA methylation contribute to the development of many diseases, including cancer. In glioblastoma multiforme, the most prevalent primary brain cancer and an incurable tumor with a median survival time of 15 months, a single epigenetic modification, the methylation of the O6-Methylguanine-DNA Methyltransferase (MGMT) gene, is a valid biomarker for predicting response to therapy with alkylating agents and also, independently, prognosis. More recently, the progress from single gene to whole-genome analysis of DNA methylation has allowed a better subclassification of glioblastomas. Here, we review the clinically relevant information that can be obtained by studying MGMT gene and whole-genome DNA methylation changes in glioblastomas, also highlighting benefits, including those of liquid biopsy, and pitfalls of the different detection methods. Finally, we discuss how changes in DNA methylation, especially in glioblastomas bearing mutations in the Isocitrate Dehydrogenase (IDH) 1 and 2 genes, can be exploited as targets for tailoring therapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , O(6)-Metilguanina-ADN Metiltransferasa/genética , Regiones Promotoras Genéticas , Proteínas Supresoras de Tumor/genética
18.
Front Oncol ; 12: 926967, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875139

RESUMEN

Glioblastomas are the most frequent and malignant brain tumor hallmarked by an invariably poor prognosis. They have been classically differentiated into primary isocitrate dehydrogenase 1 or 2 (IDH1 -2) wild-type (wt) glioblastoma (GBM) and secondary IDH mutant GBM, with IDH wt GBMs being commonly associated with older age and poor prognosis. Recently, genetic analyses have been integrated with epigenetic investigations, strongly implementing typing and subtyping of brain tumors, including GBMs, and leading to the new WHO 2021 classification. GBM genomic and epigenomic profile influences evolution, resistance, and therapeutic responses. However, differently from other tumors, there is a wide gap between the refined GBM profiling and the limited therapeutic opportunities. In addition, the different oncogenes and tumor suppressor genes involved in glial cell transformation, the heterogeneous nature of cancer, and the restricted access of drugs due to the blood-brain barrier have limited clinical advancements. This review will summarize the more relevant genetic alterations found in GBMs and highlight their potential role as potential therapeutic targets.

19.
Cancers (Basel) ; 14(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35884525

RESUMEN

Background: Ollier disease (OD) is a rare nonhereditary type of dyschondroplasia characterized by multiple enchondromas, with typical onset in the first decade of life. Surgery is the only curative treatment for primary disease and its complications. Patients with OD are at risk of malignant transformation of enchondromas and of occurrence of other neoplasms. Methods: A wide literature review disclosed thirty cases of glioma associated with OD, most of them belonging to the pre-molecular era. Our own case was also included. Demographic, clinical, pathologic, molecular, management, and outcome data were analyzed and compared to those of sporadic gliomas. Results: Gliomas associated with OD more frequently occur at younger age, present higher rates of multicentric lesions (49%), brainstem localizations (29%), and significantly lower rates of glioblastomas (7%) histotype. The IDH1 R132H mutation was detected in 80% of gliomas of OD patients and simultaneously in enchondromas and gliomas in 100% of cases. Conclusions: The molecular data suggest a higher risk of occurrence of glioma in patients with enchondromas harboring the IDH1 R132H mutation than those with the IDH1 R132C mutation. Thus, we suggest considering the IDH1 R132H mutation in enchondromas of patients with OD as a predictive risk factor of occurrence of glioma.

20.
Front Oncol ; 12: 854437, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433419

RESUMEN

Atypical teratoid rhabdoid tumor is a rare lesion that occurs mainly in children can be supratentorial or infratentorial and it accounts for 1-2% of pediatric brain tumors and over 10% of central nervous system (CNS) tumors in infants, with a male preponderance up to 3 years of age, more than 50% of these occur in the cerebellum. In this report we describe four new cases of sellar AT/RTs underwent endoscopic endonasal approach and different adjuvant therapies. Our aim is to report the clinical, radiological and pathological features of these rare lesions, focusing on the possibility to perform an early diagnosis and appropriate therapeutic strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA