Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 41(6): 1915-1927, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33853347
2.
Hepatology ; 53(6): 2016-26, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21433045

RESUMEN

Hepatocyte proliferation early after liver resection is critical in restoring liver mass and preserving function as the liver regenerates. Carbon monoxide (CO) generated by heme oxygenase-1 (HO-1) strongly influences cellular proliferation and both HO-1 and CO are accepted hepatoprotective molecules. Mice lacking functional HO-1 were unable to mount an appropriate regenerative response following partial hepatectomy (PHTx) compared to wildtype controls. We therefore hypothesized that exogenous administration of CO at low, nontoxic concentrations would modulate hepatocyte (HC) proliferation and liver regeneration. Animals treated with a low concentration of CO 1 hour prior to 70% hepatectomy demonstrated enhanced expression of hepatocyte growth factor (HGF) in the liver compared to controls that correlated with a more rapid onset of HC proliferation as measured by phospho-histone3 staining, increased expression of cyclins D1 and E, phosphorylated retinoblastoma, and decreased expression of the mitotic inhibitor p21. PHTx also increased activation of the HGF receptor c-Met, which was detected more then 9 hours earlier in the livers of CO-treated mice. Blockade of c-Met resulted in abrogation of the CO effects on HC proliferation. Corresponding with increased HC proliferation, treatment with CO maintained liver function with normal prothrombin times versus a 2-fold prolongation in controls. In a lethal 85% PHTx, CO-treated mice showed a greater survival rate compared to controls. In vitro, CO increased HGF expression in hepatic stellate cells, but not HC, and when cocultured together led to increased HC proliferation. In summary, we demonstrate that administration of exogenous CO enhances rapid and early HC proliferation and, importantly, preserves function following PHTx. Taken together, CO may offer a viable therapeutic option to facilitate rapid recovery following PHTx.


Asunto(s)
Monóxido de Carbono/farmacología , Hepatectomía , Regeneración Hepática/efectos de los fármacos , Hígado/citología , Hígado/cirugía , Animales , Peso Corporal/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Hemo-Oxigenasa 1/deficiencia , Hemo-Oxigenasa 1/genética , Factor de Crecimiento de Hepatocito/metabolismo , Estimación de Kaplan-Meier , Hígado/metabolismo , Regeneración Hepática/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
3.
Circulation ; 121(4): 537-48, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20083679

RESUMEN

BACKGROUND: Carbon monoxide (CO) has emerged as a vascular homeostatic molecule that prevents balloon angioplasty-induced stenosis via antiproliferative effects on vascular smooth muscle cells. The effects of CO on reendothelialization have not been evaluated. METHODS AND RESULTS: Exposure to CO has diametrically opposite effects on endothelial cell (EC) and vascular smooth muscle cell proliferation in rodent models of carotid injury. In contrast to its effect of blocking vascular smooth muscle cell growth, CO administered as a gas or as a CO-releasing molecule enhances proliferation and motility of ECs in vitro by >50% versus air controls, and in vivo, it accelerates reendothelialization of the denuded artery by day 4 after injury versus day 6 in air-treated animals. CO enhanced EC proliferation via rapid activation of RhoA (Ras homolog gene family, member A), followed by downstream phosphorylation of Akt, endothelial nitric oxide (NO) synthase phosphorylation, and a 60% increase in NO generation by ECs. CO drives cell cycle progression through phosphorylation of retinoblastoma, which is dependent in part on endothelial NO synthase-generated NO. Similarly, endothelial repair in vivo requires NO-dependent mobilization of bone marrow-derived EC progenitors, and CO yielded a 4-fold increase in the number of mobilized green fluorescent protein-Tie2-positive endothelial progenitor cells versus controls, with a corresponding accelerated deposition of differentiated green fluorescent protein-Tie2-positive ECs at the site of injury. CO was ineffective in augmenting EC repair and the ensuing development of intimal hyperplasia in eNOS(-/-) mice. CONCLUSIONS: Collectively, the present data demonstrate that CO accelerates EC proliferation and vessel repair in a manner dependent on NO generation and enhanced recruitment of bone marrow-derived endothelial progenitor cells.


Asunto(s)
Aorta/metabolismo , Trasplante de Médula Ósea , Monóxido de Carbono/metabolismo , Traumatismos de las Arterias Carótidas/cirugía , Endotelio Vascular/metabolismo , Células Madre Hematopoyéticas/metabolismo , Óxido Nítrico/metabolismo , Animales , Aorta/citología , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Endotelio Vascular/patología , Células Madre Hematopoyéticas/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína de Retinoblastoma/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
4.
J Biol Chem ; 284(32): 21369-78, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19509285

RESUMEN

Biliverdin reductase A (BVR) catalyzes the reduction of biliverdin (BV) to bilirubin (BR) in all cells. Others and we have shown that biliverdin is a potent anti-inflammatory molecule, however, the mechanism by which BV exerts its protective effects is unclear. We describe and elucidate a novel finding demonstrating that BVR is expressed on the external plasma membrane of macrophages (and other cells) where it quickly converts BV to BR. The enzymatic conversion of BV to BR on the surface by BVR initiates a signaling cascade through tyrosine phosphorylation of BVR on the cytoplasmic tail. Phosphorylated BVR in turn binds to the p85alpha subunit of phosphatidylinositol 3-kinase and activates downstream signaling to Akt. Using bacterial endotoxin (lipopolysaccharide) to initiate an inflammatory response in macrophages, we find a rapid increase in BVR surface expression. One of the mechanisms by which BV mediates its protective effects in response to lipopolysaccharide is through enhanced production of interleukin-10 (IL-10) the prototypical anti-inflammatory cytokine. IL-10 regulation is dependent in part on the activation of Akt. The effects of BV on IL-10 expression are lost with blockade of Akt. Inhibition of surface BVR with RNA interference attenuates BV-induced Akt signaling and IL-10 expression and in vivo negates the cytoprotective effects of BV in models of shock and acute hepatitis. Collectively, our findings elucidate a potentially important new molecular mechanism by which BV, through the enzymatic activity and phosphorylation of surface BVR (BVR)(surf) modulates the inflammatory response.


Asunto(s)
Membrana Celular/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Antiinflamatorios/farmacología , Biliverdina/metabolismo , Humanos , Inflamación , Interleucina-10/biosíntesis , Interleucina-10/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/biosíntesis , Fracciones Subcelulares/metabolismo
5.
Cell Cycle ; 7(10): 1379-84, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18418071

RESUMEN

Heme oxygenase-1 (HO-1) and carbon monoxide (CO) modulate inflammation, proliferation/cell cycle and survival in a host of pathophysiological situations by reestablishing homeostasis. While several target genes and signaling pathways have now been elucidated that participate in HO-1/CO mediated protection, the events that occur in response to HO-1/CO under cellular stressors remain poorly understood particularly as they relate to therapeutic effects. Clearly there are differences among cell and tissue types driven by variations in basal gene expression profiles and more importantly under different activation states. In these instances where HO-1/CO mediate cytoprotection and restore homeostasis, critical regulatory and signaling mechanisms are in place to efficiently direct the cellular response. We propose that the HO-1 system acts as a biosensor for the cell. A fascinating aspect of the pleiotropic effects of the HO-1 system and the metabolic products involves the concept that its functional response befits the circumstances in which it finds itself whether prophylactically or therapeutically so as to ensure continued survival. This aspect of HO-1 and specifically the cellular response to CO as it relates to cell cycle and proliferation will be discussed in detail in this perspective.


Asunto(s)
Apoptosis/fisiología , Monóxido de Carbono/metabolismo , Ciclo Celular/fisiología , Proliferación Celular , Hemo-Oxigenasa 1/metabolismo , Homeostasis/fisiología , Línea Celular Tumoral , Activación Enzimática , Humanos
6.
J Mol Med (Berl) ; 86(3): 267-79, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18034222

RESUMEN

Carbon monoxide (CO), a gaseous second messenger, arises in biological systems during the oxidative catabolism of heme by the heme oxygenase (HO) enzymes. Many biological functions of HO, such as regulation of vessel tone, smooth muscle cell proliferation, neurotransmission, and platelet aggregation, and anti-inflammatory and antiapoptotic effects have been attributed to its enzymatic product, CO. How can such diverse actions be achieved by a simple diatomic gas; can its protective effects be explained via regulation of a common signaling pathway? A number of the known signaling effects of CO depend on stimulation of soluble guanylate cyclase and/or activation of mitogen-activated protein kinases. The consequences of this activation remain unknown but appear to differ depending on cell type and circumstances. The majority of studies reporting a protective role of CO focus on pathways initiated by the pathological stimulus (e.g., lipopolysaccharide, hypoxia, balloon injury, tumor necrosis factor alpha, etc.) and its consequential modulation by CO. What has been less studied is the manner in which CO exposure alone modulates the molecular machinery of the cell so that a subsequent stress stimulus will elicit a homeostatic response as opposed to one that is chaotic and disordered. CO potentially interacts with other intracellular hemoprotein targets, although little is known about the functional significance of such interactions other then the known targets including mitochondrial oxidases, oxygen sensors, and nitric oxide synthases. The earliest response of a cell exposed to low concentrations of CO is clearly an increase in reactive oxygen species formation that we define as oxidative conditioning. This has important consequences for inflammation, proliferation, mitochondria biogenesis, and apoptosis. Within this review, we will highlight recent research on the molecular events underlying the physiologic effects of CO-which lead to cytoprotective conditioning.


Asunto(s)
Monóxido de Carbono/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Homeostasis , Transducción de Señal , Animales , Humanos , Mitocondrias/enzimología , Especies Reactivas de Oxígeno/metabolismo
7.
FASEB J ; 21(11): 2840-8, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17475921

RESUMEN

Carbon monoxide (CO) exposure of an islet donor frequently leads to islet allograft long-term survival and tolerance in recipients. We show here that CO confers its protective effects at least in part by suppressing Toll-like receptor 4 (TLR4) up-regulation in pancreatic beta cells. TLR4 is normally up-regulated in islets during the isolation procedure; donor treatment with CO suppresses TLR4 expression in isolated islets as well as in transplanted grafts. TLR4 up-regulation allows initiation of inflammation, which leads to islet allograft rejection; islet grafts from TLR4-deficient mice survive indefinitely in BALB/c recipients and show significantly less inflammation at various days after transplantation compared with grafts from a control donor. Isolated islets preinfected with a TLR4 dominant negative virus before transplantation demonstrated prolonged survival in recipients. Despite the salutary effects of TLR4 suppression, HO-1 expression is still needed in the recipient for islet survival: TLR4-deficient islets were rejected promptly after being transplanted into recipients in which HO-1 activity was blocked. In addition, incubation of an insulinoma cell line, betaTC3, with an anti-TLR4 antibody protects those cells from cytokine-induced apoptosis. Our data suggest that TLR4 induction in beta cells is involved in beta cell death and graft rejection after transplantation. CO exposure protects islets from rejection by blocking TLR4 up-regulation.


Asunto(s)
Monóxido de Carbono/farmacología , Diabetes Mellitus Experimental/terapia , Supervivencia de Injerto/fisiología , Trasplante de Islotes Pancreáticos , Receptor Toll-Like 4/antagonistas & inhibidores , Adenoviridae/genética , Animales , Western Blotting , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Tolerancia Inmunológica/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/citología , Receptor Toll-Like 4/metabolismo , Trasplante Homólogo
8.
Trends Pharmacol Sci ; 28(5): 200-5, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17416426

RESUMEN

Inflammation and immunity result in a wide range of disease processes, including atherosclerosis, vascular thrombosis and sepsis. Heme oxygenase-1 (HO-1) is a key enzyme that is integral to the temporal and spatial regulation of the host response and, together with its products carbon monoxide (CO) and bilirubin, is crucial for maintaining homeostasis and the preservation of function and life. An increasing number of reports demonstrates that HO-1, CO and bilirubin regulate the immune response. As CO and bilirubin enter clinical trials, there are obstacles to be addressed before their full therapeutic potential can be achieved. In this article, we delineate the challenges that lie ahead regarding toxicity, pharmacokinetics and mechanisms of action to be able to take full advantage of the powerful cytoprotective properties of these agents for clinical benefit.


Asunto(s)
Bilirrubina/farmacología , Biliverdina/farmacología , Monóxido de Carbono/farmacología , Hemo-Oxigenasa 1/metabolismo , Sustancias Protectoras/farmacología , Aterosclerosis/fisiopatología , Bilirrubina/efectos adversos , Bilirrubina/farmacocinética , Bilirrubina/uso terapéutico , Biliverdina/uso terapéutico , Monóxido de Carbono/efectos adversos , Monóxido de Carbono/farmacocinética , Monóxido de Carbono/uso terapéutico , Citoprotección/efectos de los fármacos , Hemo-Oxigenasa 1/fisiología , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Sustancias Protectoras/efectos adversos , Sustancias Protectoras/farmacocinética , Sustancias Protectoras/uso terapéutico , Sepsis/fisiopatología , Trombosis/fisiopatología
9.
Proc Natl Acad Sci U S A ; 104(12): 5109-14, 2007 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-17360382

RESUMEN

The most salient feature of carbon monoxide (CO)-mediated cytoprotection is the suppression of inflammation and cell death. One of the important cellular targets of CO is the macrophage (mphi). Many studies have shown that exposure of mphi to CO results in the generation of an antiinflammatory phenotype; however, these reports have ignored the effect of CO alone on the cell before stimulation. Most investigations have focused on the actions of CO in modulating the response to noxious stimuli. We demonstrate here that exposure of mphi to CO results in a significant and transient burst of reactive oxygen species (ROS) arising from the mitochondria (mitochondria-deficient mphi do not respond to CO to produce ROS). The ROS promote rapid activation and stabilization of the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha), which regulates expression of genes involved in inflammation, metabolism, and cell survival. The increase in HIF-1alpha expression induced by CO results in regulated expression of TGF-beta, a potent antiinflammatory cytokine. CO-induced HIF-1alpha and TGF-beta expression are necessary to prevent anoxia/reoxygenation-induced apoptosis in mphi. Furthermore, blockade of HIF-1alpha using RNA interference and HIF-1alpha-cre-lox mphi resulted in a loss of TGF-beta expression and CO-induced protection. A similar mechanism of CO-induced protection was operational in vivo to protect against lung ischemia-reperfusion injury. Taken together, we conclude that CO conditions the mphi via a HIF-1alpha and TGF-beta-dependent mechanism and we elucidate the earliest events in mphi signaling that lead to and preserve cellular homeostasis at the site of injury.


Asunto(s)
Monóxido de Carbono/farmacología , Citoprotección/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Precondicionamiento Isquémico , Animales , Apoptosis/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-10/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Oxígeno/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/inducido químicamente , Termodinámica , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA